FISEVIER

Contents lists available at SciVerse ScienceDirect

## **Bioorganic & Medicinal Chemistry Letters**

journal homepage: www.elsevier.com/locate/bmcl



# Novel 1-alkynyl substituted 1,2-dihydroquinoline derivatives from nimesulide (and their 2-oxo analogues): A new strategy to identify inhibitors of PDE4B

Sarbani Pal<sup>a,\*</sup>, Shylaprasad Durgadas <sup>b,c</sup>, Suresh Babu Nallapati <sup>b</sup>, Khagga Mukkanti <sup>b</sup>, Ravikumar Kapavarapu <sup>d</sup>, Chandana Lakshmi T. Meda <sup>d</sup>, Kishore V.L. Parsa <sup>d</sup>, Manojit Pal <sup>d,\*</sup>

#### ARTICLE INFO

Article history: Received 9 June 2011 Revised 19 July 2011 Accepted 5 August 2011 Available online 19 August 2011

Keywords: Nimesulide 1,2-Dihydroquinoline Alkyne PDE4

#### ABSTRACT

A number of novel 1-(3-arylprop-2-ynyl) substituted 1,2-dihydroquinoline derivatives related to nimesulide and their 2-oxo analogues have been designed as potential inhibitors of PDE4. All these compounds were synthesized by using Sonogashira coupling as a key step. In vitro PDE4B inhibitory properties and molecular modeling studies of some of the compounds synthesized are presented.

© 2011 Elsevier Ltd. All rights reserved.

Phosphodiesterase type 4 (PDE4), one of eleven isozymes of cyclic nucleotide phosphodiesterases (PDEs) exists in four different isoforms (PDE4A, B, C and D). It is specific for the hydrolysis of cAMP to AMP in mast cells, basophils, eosinophils, monocytes, and lymphocytes as well as areas in the brain and airway smooth muscle.<sup>1-4</sup> The elevated levels of cAMP on the other hand are associated with the inhibition of cellular responses, including the production and/or release of proinflammatory mediators, cytokines, and active oxygen species in inflammatory cells. Thus inhibition of PDE4B suppresses inflammatory cell function via increasing the intracellular concentration of cAMP in the airway tissues and cells. The PDE4 inhibitors therefore are beneficial for the treatment of inflammatory and immunological diseases including asthma and chronic obstructive pulmonary disease (COPD). 1,4-6 While a number of inhibitors have shown promising results in clinical trials many of them are either dropped or halted due to the undesired side effects such as nausea, emesis, 1-3,5-8 and cardiovascular complications.9a Experimental data suggests that PDE4B is the main subtype that promotes inflammation whereas inhibition of PDE4D may cause emesis.9b It is therefore necessary to search for novel chemical class for the identification of PDE4B selective inhibitors

as targeting PDE4B may be useful for the treatment of COPD and asthma without causing or minimizing the emetic side effects. Herein we report a new strategy to identify novel inhibitors of PDE4B namely 1-(3-arylprop-2-ynyl)-1,2-dihydroquinoline derivatives based on nimesulide.

A variety of heterocyclic structures has been explored for the discovery of novel PDE4 inhibitors<sup>1,10</sup> including *N*-alkyl substituted quinazolinone. For example, 4-(3-chlorophenyl)-1,7-diethylquinazolin-2(1*H*)-one or YM-976 (**A**, Fig. 1) that belongs to this class was identified as a potent inhibitor of PDE4 and showed promising results in animal models.<sup>10a</sup> Alkyne derivatives represented by general formula **B** (Fig. 1) on the other hand has been reported as inhibitors of PDE4.<sup>11</sup> Combining some of the structural features of **A** and **B** in a single molecule may lead to a new class of compound **C** (Fig. 1) which may be explored for the identification of novel PDE4 inhibitors. Prompted by this hypothesis we initially became interested in the synthesis of **C** and subsequent evaluation of their PDE4 inhibiting properties in vitro.

The key starting material **1** required for our synthesis was prepared following a reported method (Scheme 1).<sup>12</sup> Thus Vilsmeier–Haack cyclization of *N*-phenylacetamide (**2**) followed by hydrolyzing the resulting chloro compound in a mixture of acetic acid–water provided the quinolinone derivative **3** which on treatment with propargyl bromide afforded the expected terminal alkyne **1**.

<sup>&</sup>lt;sup>a</sup> Department of Chemistry, MNR Degree and PG College, Kukatpally, Hyderabad, India

b Centre for Chemical Sciences and Technology, Institute for Sciences and Technology, JNT University Hyderabad, Kukatpally, Hyderabad, India

<sup>&</sup>lt;sup>c</sup> MSN Pharmachem Pvt. Ltd, Plot No. 212/A,B,C,D, APIICL, Phase-II, Pashamylaram, Patancheru (M), Medak District 502 307, Andhra Pradesh, India

<sup>&</sup>lt;sup>d</sup> Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India

<sup>\*</sup> Corresponding authors. Tel.: +91 40 6657 1500; fax: +91 40 6657 1581.

E-mail addresses: sarbani277@yahoo.com (S. Pal), manojitp@ilsresearch.org
(M. Pal).

Figure 1. Design of new PDE4 inhibitors (C) based on known inhibitors A and B.

The alkyne **1** was reacted with a number of aryl iodide (Scheme 1) in the presence of Pd(OAc)<sub>2</sub> and Cul using Et<sub>3</sub>N as a base in THF at 50–55 °C under nitrogen.<sup>13</sup> The reaction did not proceed in the absene of Cul. The use of (*i*-Pr)<sub>2</sub>NEt in place of Et<sub>3</sub>N decreased the product yield. Notably, to the best of our knowledge Sonogashira coupling using alkyne **1** is not common in the literature.<sup>14</sup> The results of our palladium-catalyzed reaction leading to various alkynyl derivatives **4a–f** are summarized in Scheme 1 (the last step). It is evident from Scheme 1 that the present C–C bond forming reaction proceeded well irrespective of the nature of substituents present in alkyne **1** or aryl iodides employed. All the target compounds were prepared in moderate to good yields.

Due to our interest in the synthesis of quinoline based compounds of potential pharmacological interest we have recently reported the synthesis of 1,2-dihydroquinoline-based compound derived from an anti-inflammatory agent nimesulide.<sup>15</sup> Combining the structural features of these compounds with dihydroquinolines **4** (or **C**) we planned to synthesize compounds **7** as a new strategy to identify inhibitors of PDE4B. Accordingly, the compound **5** was reacted with propargyl bromide to give the terminal alkyne **6** which on Sonogashira coupling with aryl iodides under the condition as mentioned earlier provided the desired product **7** (Scheme 2). A number of aryl iodides were reacted with the alkyne **6** smoothly to give the aryl coupled product **7** without generating any significant side products. The groups such as NHSO<sub>2</sub>Me and OPh present in compound **6** and NO<sub>2</sub>, Cl and CO<sub>2</sub>Me present in aryl iodide were well tolerated.

Most of the compounds synthesized were tested for their PDE4B inhibitory properties in vitro at  $30\,\mu\text{M}$  using PDE4B enzyme assay<sup>16</sup> (Table 1). Rolipram<sup>17</sup> was used as a reference compound in this assay. In the case of 1-(3-arylprop-2-ynyl)quinolinone series (**4**) the presence of an ortho substituted aryl group attached with the alkynyl moiety was found to be benefecial (Table 1, entries 5 and 6) than other aryl substituents (Table 1, entries 1–4). However, a similar substituent effect was not observed in the case of 1-(3-phenylprop-2-ynyl)-1,2-dihydroquinoline series (**7**) (Table 1,

Scheme 1. Preparation of key alkyne  ${\bf 1}$  and its use in the preparation of  ${\bf 4}$ .

$$\begin{array}{c} \text{NHSO}_2\text{Me} \\ \text{OPh} \\ \text{OPh} \\ \text{Ref 15} \\ \text{NO}_2 \\ \text{Nimesulide} \end{array} \begin{array}{c} \text{MeO}_2\text{SHN} \\ \text{OPh} \\ \text{Me} \\$$

**Scheme 2.** Synthesis of 1-(3-arylprop-2-ynyl)-1,2-dihydroquinolines derived from nimesulide.

### Download English Version:

# https://daneshyari.com/en/article/1370462

Download Persian Version:

https://daneshyari.com/article/1370462

<u>Daneshyari.com</u>