
Bioorganic & Medicinal Chemistry Letters 25 (2015) 2918-2922

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and evaluation of novel fluorinated pyrazolo-1,2,3-triazole hybrids as antimycobacterial agents

CrossMark

Narender Reddy Emmadi^a, Chiranjeevi Bingi^a, Sudha Sravanti Kotapalli^b, Ramesh Ummanni^b, Jagadeesh Babu Nanubolu^c, Krishnaiah Atmakur^{a,d,*}

^a Crop Protection Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India

^b Chemical Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India

^c Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India

^d Academy of Scientific and Innovative Research, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India

ARTICLE INFO

Article history: Received 16 April 2015 Revised 18 May 2015 Accepted 20 May 2015 Available online 27 May 2015

Keywords: Antimycobacterial activity Cytotoxicity Click chemistry 3-Trifluoromethyl pyrazolo-1,2,3-triazole hybrids

ABSTRACT

A library of novel 3-trifluoromethyl pyrazolo-1,2,3-triazole hybrids (**5**–**7**) were accomplished starting from 5-phenyl-3-(trifluoromethyl)-1*H*-pyrazol-4-amine (**1**) via key intermediate 2-azido-*N*-(5-phenyl-3-(trifluoromethyl)-1*H*-pyrazol-4-yl)acetamide (**3**) through click chemistry approach. Thus obtained compounds in **5**–**7** series were evaluated for in vitro antimycobacterial activity against *Mycobacterium smegmatis* (MC^2 155) and also verified the cytotoxicity. These studies engendered promising lead compounds **5q**, **7b** and **7c** with MIC (μ g/mL) values 15.34, 16.18 and 16.60, respectively. Amongst these three compounds, 2-(4-(4-methoxybenzoyl)-1*H*-1,2,3-triazol-1-yl)-*N*-(5-phenyl-3-(trifluoromethyl)-1*H*-pyrazol-4-yl) acetamide (**5q**) emerged as the most promising antitubercular agent with lowest cytotoxicity against the A549 cancer cell line. This is the first report to demonstrate the pyrazolo triazole hybrids as potential antimycobacterial agents.

© 2015 Elsevier Ltd. All rights reserved.

Tuberculosis (TB) is a potentially serious infectious disease caused by *Mycobacterium tuberculosis* which affects mainly the lungs (pulmonary TB) apart from other vital organs.¹ The World Health Organization (WHO 2013) estimated that there are 8.6 million TB cases which includes 1.1 million co-infected with HIV. Tuberculosis is one of the leading cause for mortality and in the year 2012 alone, there were 410,000 deaths of women affected by TB including 160,000 associated with HIV positive cases.² Additionally, multi drug resistant tuberculosis (MDR-TB) and extremely drug resistant tuberculosis (XDR-TB) has become a major threat to human kind.³ In these circumstances, development of hybrid molecules through the combination of different pharmacophores in a single frame work with novel mechanism of action is one of the best way to achieve effective TB control.⁴

Meanwhile, 1,2,3-triazoles have gained enormous interest in recent years owing to their broad spectrum pharmaceutical and therapeutic applications such as antimicrobial activity against gram-positive bacteria, therapeutic fungicides of second generation, anti-inflammatory agents, inhibitors of tumor proliferation, invasion, metastasis and anti-HIV activity etc (Fig. 1).⁵

Further, triazole based antitubercular agents regarded as a new class of molecules that provide truly effective lead candidates reported to inhibit bacteria.⁶ Compound **II** (I-A09) (Fig. 1) comes under this category is presently in pre-clinical trials.⁷

Furthermore, pyrazole compounds are known to possess good biological activities such as potent aurora A/B kinase inhibitors, calcium (CRAC) channel inhibitors, antitumor and *Mycobacterium tuberculosis*.⁸ Additionally, it is well documented that incorporation of trifluoromethyl group into organic molecules can lead to profound changes in physical, chemical, and especially biological properties of the molecule.

Specially, insertion of trifluoromethyl group at 3rd position of the pyrazole ring lead to good biologically active moieties including those used as inhibitors of the measles virus RNA polymerase complex,⁹ inhibitors of CRAC channel,¹⁰ modulators of AMPA receptor.¹¹ Selective COX-2 inhibitors such as celecoxib (**IV**),¹² fungicide penthiopyrad (**V**)¹³ and factor Xa inhibitor razaxaban(**VI**)¹⁴ (Fig. 1).

Based on the biological significance of triazole and 3-trifluoromethyl pyrazole moieties and also as a part of our ongoing research programme on the bioactive heterocyclic compounds,¹⁵ we envisaged the integration of 3-trifluoromethyl pyrazole and triazole pharmacophore units with acetamide linkage in one molecular platform to generate a new pyrazolo triazole hybrid frame work and to determine the anti-TB activity. In this context, the literature

^{*} Corresponding author. Tel.: +91 40 27191436; fax: +91 40 27193382. *E-mail address:* krishnu@iict.res.in (K. Atmakur).

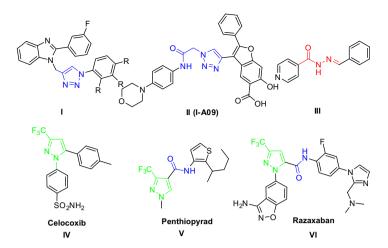
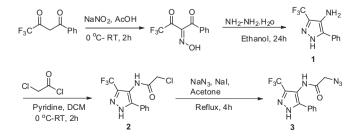



Figure 1. Bioactive triazole and 3-trifluoromethyl containing pyrazole moieties.

survey revealed that there are no reports available on the combination of pyrazole, triazole frame work with anti-tuberculosis properties. With the fact that 1,2,3-triazoles were efficiently made through Cu(I) catalyzed click chemistry,¹⁶ we herein report for the first time an efficient synthesis of a series of novel 3-trifluoromethyl pyrazole-1,2,3-triazole hybrids (**5a–v**) in excellent yields (Scheme 2). Further the compound **5i** converted into hydrazone derivatives of 3-trifluoromethyl pyrazole-1,2,3-triazole hybrids (**7a–e**) and all the compounds in **5–7** series were subjected to in vitro activity studies against *Mycobacterium smegmatis* (MC² 155) and also verified the cytotoxicity.

The designed 3-trifluoromethyl pyrazolo-1,2,3-triazole frame work (Fig. 2) made into three parts: N-substituted 1,2,3-triazole as a mainstay, 5-phenyl-3-(trifluoromethyl)-1*H*-pyrazol-4-amine to intensify the desired pharmacophoric behavior with drug like properties and aliphatic or aromatic groups and aryl amino methyl and aroyl groups adjoined to other side of 1,2,3-triazole moiety. Distinctions in the proposed scaffold also accomplished with the choice of aliphatic or aromatic alkynes **4a**–**v** (Fig. 4). Synthesis of 1,2,3-triazole moiety was through the Huisgen 1,3-dipolar cycload-dition reaction¹⁷ (click reaction) between azide **3** and alkynes **4a**–**v**.

Initially, synthesis of 5-phenyl-3-(trifluoromethyl)-1*H*-pyrazol-4-amine $(1)^{18}$ was started from 4,4,4-trifluoro-1-phenylbutane-1,3-dione on reaction with NaNO₂ in acetic acid followed by with hydrazine hydrate in ethanol. Structure of pyrazol-4-amine (1)was unambiguously confirmed by single crystal X-ray diffraction analysis and the data deposited at the CCDC 1051815 (Fig. 3). Further, compound **1** was treated with chloroacetyl chloride¹⁹ using pyridine as a base in DCM and the resulting compound **2** was reacted with sodium azide using catalytic amount of NaI to give 2-azido-*N*-(5-phenyl-3-(trifluoromethyl)-1*H*-pyrazol-4-yl)acetamide in 98% yield (Scheme 1). The azide **3** was fully

Scheme 1. Synthesis of 2-azido-*N*-(5-phenyl-3-(trifluoromethyl)-1*H*-pyrazol-4-yl)acetamide **3**.

characterized by ¹H, ¹³C NMR and mass (ESI and HR-MS) spectral data. On the other hand, alkynes **4a–j** were procured from commercially available sources, whereas, **4l–p** were prepared by the reaction of substituted anilines with proparzyl bromide, K_2CO_3 in DMF²⁰ and **4q–v** were obtained by the reaction of substituted aldehydes with ethynyl magnesium bromide in Dry THF and the resulting alcohols were further oxidised with IBX.²¹

Having both azide **3** and alkynes **4a–v** on hand, we next subjected them to Huisgen's (3 + 2) cycloaddition reaction in the presence of CuSO₄, sodium ascorbate in *t*-butanol and water (1:1, v/v) to get pyrazole-1,2,3,-triazole hybrids (**5a–v**) in excellent yields (Scheme 2) and were characterized by ¹H, ¹³C NMR and mass spectral data.

Further compound **5i** was reacted with hydrazine hydrate to get triazolo carbonyl hydrazine (**6**) and further it was condensed with aromatic aldehydes in ethanol to give triazolo hydrazones²² (**7a–e**) (Scheme 3). Thus obtained hydrazones **7a–e** was well characterized by ¹H, ¹³C NMR and mass (ESI and HRMS) spectral data.

All the compounds in **5–7** series were evaluated for antimycobacterial activity against *Mycobacterium smegmatis* (MC^2 155). Outcome of the screening study showed that some of the compounds (Fig. 5) exhibited promising antimycobacterial activity with MIC values ranging from 15 to 95 µg/mL. Specifically, compounds **5q**, **7b** and **7c** showed remarkable MIC (µg/mL) values 15.34, 16.18 and 16.60, respectively. Other compounds such as **5a**, **5b**, **5g**, **5c**, **5e** and **5i** showed moderate antimycobacterial activity with MIC (µg/mL) values 35.93, 35.41, 29.94, 31.75, 35.37 and 27.73, respectively.

Structure activity correlation of compounds in **5–7** series with respect to their antitubercular activity revealed that, compounds in **5** series bearing 4-OCF₃, Ph and pentyl (**5b**, **c** & **e**) groups on phenyl ring showed moderate activity with MIC values ranging from 31.75-35.41 μ g/mL. However, 3-methyl substitution 5g attributed to increase in activity (MIC 29.94 μ g/mL). Whereas, presence of 4-t-butyl group on phenyl ring 5d showed very poor activity in contrast to 5g. Replacement of phenyl group in 5 series with Nmethyl aniline moiety, irrespective of substitution on phenyl group **51–p** induced decrease in activity. However, replacing the phenyl group with ester functional 5i attributed to enhanced activity (MIC 27.73 μ g/mL). Subsequent replacement of ester functional in 5i with 4-methoxy benzoyl group 5q lead to tremendous increase in activity with MIC 15.34 μ g/mL (high activity compound in the series), whereas 3,4-dimethoxy benzoyl group 5r receded the activity. Furthermore, conversion of ester functional in 5i into hydrazide (6) proved to be not effective. In order to get the enhanced activity, hydrazide (6) was converted to hydrazones by

Download English Version:

https://daneshyari.com/en/article/1370692

Download Persian Version:

https://daneshyari.com/article/1370692

Daneshyari.com