FISEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Antiproliferative glabretal-type triterpenoids from the root bark of *Dictamnus dasycarpus*

Nahyun Kim^a, Kyu-Won Cho^a, Seong Su Hong^{a,b}, Bang Yeon Hwang^c, Taehoon Chun^{a,*}, Dongho Lee^{a,*}

- ^a College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
- ^b Natural Products Research Institute, Gyeonggi Institute of Science and Technology Promotion, Suwon 443-270, Republic of Korea
- ^c College of Pharmacy, Chungbuk National University, Cheongju 362-763, Republic of Korea

ARTICLE INFO

Article history:
Received 1 September 2014
Revised 3 December 2014
Accepted 4 December 2014
Available online 9 December 2014

Keywords: Dictamnus dasycarpus Rutaceae Glabretal-type triterpenoid Antiproliferative effect

ABSTRACT

Four new glabretal-type triterpenoids, dictabretols A–D (1–4), were isolated by activity-guided fractionation from the root bark of *Dictamnus dasycarpus* T. (Rutaceae) using an in vitro antiproliferative assay on T cells using splenocytes. The structures of these compounds were determined by spectroscopic methods, including 2D NMR experiments. Compounds were evaluated for their immunosuppressive activity on T cells and demonstrated inhibition of proliferation of activated T cells, up to IC₅₀ of 1.5 µM.

© 2014 Elsevier Ltd. All rights reserved.

Dictamnus dasycarpus T. (Rutaceae) is a perennial herb that is widespread across Asia and Europe; it is known as the 'gas plant' or 'burning-bush' because of the volatile oils it produces.^{1,2} D. dasycarpus has been used as a traditional medicine for amenorrhea, anti-fertilization, cough, jaundice, rheumatism, and skin disorders. Phytochemical studies of the Dictamnus genus have shown it to contain alkaloids, limonoids, flavonoids, coumarins, sesquiterpene glycosides, and essential oils.^{3–10}

Immunosuppressive agents have been used to treat immunologically mediated diseases and prevent activities related to the immune system, such as organ transplantation rejection. Among these agents, cyclosporin A and FK506, initially isolated from the fungus *Cylindrocarbon lucidum* and *Streptomyces tsukubaensis* is the most widely used and effective immunosuppressive drug in clinical use today. ^{11–14} Given its side effects on vascular tension and plasma lipoprotein, there is a need for new immunosuppressive agents. ¹⁵

In our search for immunosuppressive agents from natural origin, methanolic extract of the root bark of *D. dasycarpus* was found to inhibit the proliferation of T cells. The bioassay-guided fractionation and purification of CHCl₃-soluble fraction led to the isolation of four new glabretal-type triterpenoids, dictabretols A–D (1–4). The effects of the compounds on activated T cells were examined

E-mail addresses: tchun@korea.ac.kr (T. Chun), dongholee@korea.ac.kr (D. Lee).

by measuring the proliferation of T cells and the secretion level of cytokines, IL-2 and IFN- γ .¹⁷ This report describes the isolation and structure elucidation of **1–4** along with their biological evaluation (Fig. 1).

Dictabretol A $(1)^{18}$ was isolated as a white amorphous powder, mp 234.4 °C. The molecular formula was determined as $C_{35}H_{56}O_7$ by HRESIMS at m/z 587.3951 [M-H]⁻ (calcd for $C_{35}H_{55}O_7$, 587.3948), with eight degrees of unsaturation in the molecule. The IR spectrum showed the presence of hydroxy (3402 cm⁻¹) and ester (1723 cm⁻¹) functionalities. The ¹H NMR spectrum of **1** (in CDCl₃, Table 1) displayed the signals for seven methyl groups at $\delta_{\rm H}$ 0.88 (H-19), 1.31 (H-27), 0.84 (H-28), 0.87 (H-29), 1.04 (H-30), 0.96 (H-4'), and 0.95 (H-5'). Proton signals for six oxygenated methines at $\delta_{\rm H}$ 4.65 (H-3), 3.75 (H-7), 5.43 (H-21), 3.94 (H-23), 3.18 (H-24), and 3.65 (H-26) as well as overlapping proton signals for aliphatic methines and methylenes were exhibited. In addition, characteristic signals were observed for a cyclopropyl methylene group in a relatively high-field region at δ_H 0.71 (2H, doublet, *J* = 4.5 Hz, H-18a) and 0.46 (2H, doublet, *J* = 5.0 Hz, H-18b). Detailed analysis of ¹H and ¹³C NMR spectra (Tables 1 and 2) as well as the HMBC spectrum revealed that compound 1 has a glabretal triterpene skeleton. 19,20 The ¹H and ¹³C NMR spectra of **1** displayed the signals of a trisubstituted epoxy group at C-24 [δ_{H} 3.18 (1H, doublet, J = 7.5 Hz) and $\delta_{\rm C}$ 63.4] and C-25 ($\delta_{\rm C}$ 60.7). In addition, the chemical shifts at δ_{C} 98.3 (C-21) and δ_{H} 5.43 (1H, overlap, H-21) suggested the presence of a hemi-acetal group. The ¹H NMR signals at δ_H 2.21 (2H, broad doublet, J = 7.0 Hz, H-2′), 2.13

^{*} Corresponding authors. Tel.: +82 2 3290 3069; fax: +82 2 3290 3499 (T.C.); tel.: +82 2 3290 3017; fax: +82 2 953 0737 (D.L.).

Figure 1. Structures of compounds 1–4.

Table 1 ¹H NMR data for compounds **1–4**^a

No.	1	2	3	4
1	1.36 m, 1.13 m	1.37 m, 1.15 m	1.35 m, 1.12 m	1.36 m, 1.13 m
2	1.89 m, 1.58 m	1.89 m, 1.58 m	1.88 m, 1.56 m	1.89 m, 1.58 m
3	4.65 br s	4.65 br s	4.63 br s	4.65 br s
4				
5	1.96 m [1.93 m]	1.95 m	1.96 m [1.93 m]	1.96 m [1.95 m]
6	1.61 m	1.61 m	1.56 m	1.63 m
7	3.75 br s	3.75 br s	3.75br s	3.76 br s
8				
9	1.30 overlap	1.32 m	1.30 overlap	1.31 m
10				
11	1.30 overlap	1.29 overlap	1.30 overlap	1.33 m
12	2.12 m; 1.79 m	2.10 m; 1.77 m		2.09 m; 1.77 m
13				
14				
15	1.93 m; 1.55 m	1.93 m	1.93 m; 1.55 m	1.93 m; 1.55 m
16	1.64 m	1.66 m	1.63 m	1.64 m
17	2.18 m [2.02 m]	2.17 m	2.20 m	2.21 m [2.04 m]
18	0.71 d (4.5); 0.46 d (5.0) [0.79 d (5.0); 0.49	0.72 br d (4.5), 0.47 d	0.70 d (4.5); 0.46 d (4.5) [0.78 d (5.0); 0.48	0.72 d (4.5); 0.48 d (5.0) [0.81 d (4.5); 0.50 d
	(5.0)]	(4.5)	(5.0)]	(4.5)]
19	0.88 s	0.89 s	0.88 s	0.90 s
20	1.86 m [2.13 m]	1.86 m	1.86 m [2.14 m]	1.88 m [2.15 m]
21	5.43 overlap [5.43 overlap]	5.35 br s	5.43 overlap [5.42 overlap]	5.44 overlap [5.45 overlap]
22	1.96 m; 1.68 m	1.85 m, 1.98 m	1.98 m; 1.69 m	1.98 m; 1.70 m
23	3.94 dt (9.5, 7.0) [4.03 ddd (10.5, 7.5, 5.0)]	4.48 t (7.5)	3.93 dt (9.5, 7,5)[4.03 ddd (10.5, 7.5, 5.5)]	3.97 dt (9.5, 7.5) [4.05 ddd (10.5, 7.5, 5.0)]
24	3.18 d (7.5) [3.06 d (7.5)]	3.15 s	3.17 d (7.5) [3.05 d (7.5)]	3.17 d (7.5) [3.07 d (7.5)]
25 26	2 65 4 (12 5) [2 57 4 (12 5)]	1 20 4	2 64 4 (12 5) [2 56 4 (12 5)]	2 67 4 (12 0) [2 50 4 (12 0)]
26 27	3.65 d (12.5) [3.57 d (12.5)] 1.31 s	1.28 s 1.26 s	3.64 d (12.5) [3.56 d (12.5)] 1.30 s	3.67 d (12.0) [3.59 d (12.0)] 1.33 s
28	0.84 s	0.85 s	0.83 s	0.85 s
28 29	0.84 s 0.87 s	0.85 s 0.88 s	0.83 s 0.87 s	0.89 s
30				
30 1'	1.04 s [1.03 s]	1.04 s	1.03 s [1.02 s]	1.06 s [1.05 s]
2'	2.21 br d (7.0)	2.23 br d (6.0)	2.32 m	2.34 t (7.5) [2.34 t (7.5)]
3′	2.21 bi d (7.0) 2.13 m	2.23 bi d (0.0)	1.61 m	1.62 m
3' 4'	0.96 d (6.5)	0.97 d (7.0)	1.61 III 1.26 m	1.62 III 1.31 m
5′	0.95 d (6.5)	0.97 d (7.0) 0.97 d (6.5)	1.26 m	1.31 m 1.26 m
6′	0.33 u (0.3)	0.37 ti (0.3)	1.26 m	1.29 m

Download English Version:

https://daneshyari.com/en/article/1371316

Download Persian Version:

https://daneshyari.com/article/1371316

<u>Daneshyari.com</u>