Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

ELSEVIER

journal homepage: www.elsevier.com/locate/bmcl

Discovery of potent 1*H*-imidazo[4,5-*b*]pyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization

Xiao-De An^{a,b,†}, Hongyan Liu^{b,†}, Zhong-Liang Xu^b, Yi Jin^c, Xia Peng^b, Ying-Ming Yao^{a,*}, Meiyu Geng^{b,*}, Ya-Qiu Long^{b,*}

^a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China ^b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China ^c School of Chemical Science and Technology, Yunnan University, Kunming 650091, China

ARTICLE INFO

Article history: Received 4 November 2014 Revised 24 November 2014 Accepted 26 November 2014 Available online 4 December 2014

Keywords: c-Met tyrosine kinase Small molecule inhibitor Imidazonaphthyridinone Imidazopyridine Binding mode Pyridone-3-carboxamide Cyclopropane-1,1-dicarboxamide

ABSTRACT

Starting from our previously identified novel c-Met kinase inhibitors bearing 1*H*-imidazo[4,5-*h*][1,6]naphthyridin-2(3*H*)-one scaffold, a global structural exploration was conducted to furnish an optimal binding motif for further development, directed by the enzyme inhibitory mechanism. First round SAR study picked two imidazonaphthyridinone frameworks with 1,8- and 3,5-disubstitution pattern as class I and class II c-Met kinase inhibitors, respectively. Further structural optimization on type II inhibitors by truncation of the imidazonaphthyridinone core and incorporation of an *N*-phenyl cyclo-propane-1,1-dicarboxamide pharmacophore led to the discovery of novel imidazopyridine-based c-Met kinase inhibitors, displaying nanomolar enzyme inhibitors effectively inhibited Met phosphorylation and its downstream signaling as well as the proliferation of Met-dependent EBC-1 human lung cancer cells at submicromolar concentrations.

© 2014 Elsevier Ltd. All rights reserved.

The MET tyrosine kinase is a cell surface receptor for the hepatocyte growth factor (HGF), a pleiotropic cytokine controlling pro-migratory, anti-apoptotic and mitogenic signals.^{1–4} Normal activation of c-Met kinase is essential for wound healing and embryonic development.² Aberrant c-Met due to specific genetic lesions, including transcriptional upregulation, gene amplification, activating mutations, increased autocrine or paracrine ligand mediated stimulation, occurred in many types of cancers.⁵ Importantly, deregulated c-Met activation has been associated with poor clinical outcomes.^{6,7} Furthermore, compelling evidence has linked c-Met overactivation to mediating intrinsic or acquired resistance to targeted therapies.^{8,9} All of these emphasize c-Met as an attractive target for cancer therapy. Indeed, quite a few c-Met inhibitors are now under clinical investment, which further proved the feasibility of c-Met inhibition method in cancer therapy.

In the past decade, an impressive number of small molecule c-Met inhibitors have been reported,^{10–14} which have basically been categorized into two classes based on their structure and binding modes in the c-Met kinase domain.^{2,15} Type I inhibitors bind in a

[†] These authors contributed to this work equally.

U-shaped conformation to the ATP-binding site at the entrance of the kinase pocket and wrap around Met1211, while type II inhibitors bind to c-Met with an extended conformation that stretches from the ATP-binding site (hinge region) to the deep hydrophobic lle 1145 pocket near the C-helix region. Some representative chemical structures from each class are illustrated in Figure 1. In general, type I inhibitors block c-Met kinase activity with high selectivity against other kinases, whereas a majority of type II molecules are multikinase inhibitors, but expected to be more effective against the mutations of c-Met active site that disrupt the type I binding mode.^{16,17}

Recently, we identified a new class of type II c-Met kinase inhibitors with 1,3,5-trisubstituted-1*H*-imidazo[4,5-*h*][1,6]naphthyridin-2(3*H*)-one scaffold (Fig. 2, exemplified by **LXM-22**), by employing drug repurposing and pharmacophore incorporation strategies.¹⁸ The new scaffold inhibitors displayed promising pharmacological property and cellular efficacy, but the inhibitory activity fell in micromolar range. According to the binding mode predicted by molecular modeling,¹⁸ the 1*H*-imidazo[4,5*h*][1,6]naphthyridin-2(3*H*)-one-based c-Met kinase inhibitor adopts an extended conformation in the ATP-binding pocket of the enzyme with the activation loop in an inactive, DFG-out conformation. However, the heterotricyclic core resides in the middle of the channel between the hinge region and the DFG motif,

^{*} Corresponding authors. Tel./fax: +86 21 50806876.

E-mail addresses: yaoym@suda.edu.cn (Y.-M. Yao), mygeng@simm.ac.cn (M. Geng), yqlong@simm.ac.cn (Y.-Q. Long).

Figure 1. Representative structures of type I and type II c-Met kinase inhibitors launched or under clinical trials.

Figure 2. The mechanism-based structural optimization on the 1H-imidazo[4,5-h][1,6]naphthyridin-2(3H)-one scaffold to develop novel type I and II c-Met kinase inhibitors.

due to the bulky size, thus losing the key hydrogen bonding interactions with Met1160. Herein, we tried to improve the potency of imidazonaphthyridinone c-Met inhibitors based on the inhibitory mechanism through two approaches: one is evolved into type I inhibitor by using the 1*H*-imidazo[4,5-*h*][1,6]naphthyridin-2(3*H*)one as a U-shape inducing moiety with two proper substituents deep into the solvent and hydrophobic regions, respectively (Fig. 2, **1a–g**, **2a–g**); the other is optimized into a bona fide type II inhibitor by incorporating the typical pharmacophore of *N*¹-phenyl-*N*³-(4-fluorophenyl)malonamide or its bioisostere¹⁹ and further truncation of the core structure to fit the ATP binding site and DFG motif pocket (Fig. 2, **3a–f**, **4a–e**).

With respect to the U-shaped type I inhibitor design, the optimal substitution pattern was investigated by synthesizing 3,5and 1,8-disubstituted analogs with hydrophobic and hydrophilic groups incorporated rotationally at the two positions (**1a–g**, and **2a–g**). As shown in Scheme 1, starting from the 1,6-naphthyridine precursor, which was prepared according to the known procedure,²⁰ the introduction of the 4-methoxybenzylamino group to 8-position was readily realized by the aromatic nucleophilic substitution of 4-methoxybenzylamine. Then the 1*H*-imidazol-2(3*H*)-one core was constructed in a similar manner as we previously reported,¹⁸ whereby the Curtius rearrangement produced an isocyanate and the following attack of the neighboring 8-amino

group furnished the cyclic urea **6**. However, the approach to install the 3-substituent was dependent on the structure of the coupling partner. Mitsunobu reaction and nucleophilic substitution reaction were applied for an alcohol and a halide to convert the 1*H*-imidazol-2(3H)-one compound 6 into 1,3-disubstituted intermediates 7(b, d, e) and 7(a, c), respectively. Further introduction of 5-substituent was achieved via Williamson etherification reaction between 5-bromo intermediates **7** and the corresponding alcohols to yield 8b-e or Buchwald-Hartwig cross coupling with amines to give **8a.** The removal of the N^1 -4-methoxybenzyl group by TFA and TfOH mixture and further demethylation by BBr₃ afforded the designed 3,5-disubstituted 1*H*-imidazo[4,5-*h*][1,6]naphthyridin-2(3H)-one derivatives **1a-e**. Interestingly, by tuning the ratio of TfOH and TFA ranging from 10% to 50%, selective debenzylation on the N^1 -position without impacting N^3 -benzyl group was achieved. Notably, when a privileged structure of 1-(2,6-dichloro-3-fluorophenyl)ethoxy group was installed at 5-position, a different synthetic route was employed. The 5-bromo intermediate 7b was converted into a phenol 10, followed by Mitsunobu reaction with 1-(2,6-dichloro-3-fluorophenyl)ethanol to generate 1f-g.

As shown in Scheme 2, the 3,5-disubstituted type II inhibitors **3a–f** were synthesized similarly, just appending a specified structure of *N*-(3-fluoro-4-(oxyphenyl)-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide at 5-position via Williamson

Download English Version:

https://daneshyari.com/en/article/1371333

Download Persian Version:

https://daneshyari.com/article/1371333

Daneshyari.com