Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and SAR of novel imidazoles as potent and selective cannabinoid CB₂ receptor antagonists with high binding efficiencies

Jos H. M. Lange^{*}, Martina A. W. van der Neut, Henri C. Wals, Gijs D. Kuil, Alice J. M. Borst, Arie Mulder, Arnold P. den Hartog, Hicham Zilaout, Wouter Goutier, Herman H. van Stuivenberg, Bernard J. van Vliet

Solvay Pharmaceuticals, Research Laboratories, C. J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands

ARTICLE INFO

Article history: Received 10 November 2009 Revised 4 December 2009 Accepted 6 December 2009 Available online 11 December 2009

Keywords: Binding efficiency index Ligand efficiency Cannabinoid CB2 receptor Inverse agonist Polar surface area Lipophilicity Subtype selectivity Ligand-lipophilicity efficiency

ABSTRACT

The synthesis and structure–activity relationship studies of imidazoles are described. The target compounds **6–20** represent a novel chemotype of potent and CB_2/CB_1 selective cannabinoid CB_2 receptor antagonists/inverse agonists with very high binding efficiencies in combination with favourable log *P* and calculated polar surface area values. Compound **12** exhibited the highest CB_2 receptor affinity ($K_i = 1.03$ nM) in this series, as well as the highest CB_2/CB_1 subtype selectivity (>9708-fold).

© 2009 Elsevier Ltd. All rights reserved.

The cannabinoid CB₂ receptor was cloned¹ in 1993 and is almost exclusively expressed in cells of the immune system, spleen, pancreas, tonsils and thymus.² Under certain circumstances the CB₂ receptor is also expressed^{3,4} in astrocytes, microglia and the brainstem.⁵ CB₂ receptor ligands have potential in the therapeutic treatment of several diseases⁶ such as inflammation, multiple sclerosis, neuropathic pain,⁷ immune regulation,⁸ osteoporosis and certain types of cancer. Recently, CB₂ receptor inverse agonists were also shown to block⁹ leucocyte recruitment in vivo.

The amino acid sequence of the CB₂ receptor has an overall identity¹ of 44% with the CB₁ receptor. Their homology in the GPCR transmembrane domain amounts to 68%, thereby providing good prospects for the design of CB subtype selective ligands. Intense research efforts have indeed led to the discovery of subtype selective human cannabinoid CB₁ receptor antagonists/inverse agonists,¹⁰ selective CB₂ receptor agonists such as JWH133,¹¹ HU-308,¹² L759656,¹³ AM-1241,¹⁴ A-796260 and A-836339¹⁵ as well as selective CB₂ receptor antagonists/inverse agonists from different chemical series such as the pyrazolecarboxamide^{16,17} SR144528 (**1**), the 2-oxoquinoline¹⁸ JTE-907 (**2**) and the triarylbissulfone¹⁹ SCH-356036 (**3**).

SCH-356036 (3)

Several reviews described^{20–25} the medicinal chemistry of CB₂ receptor ligands. Although many efforts have concentrated on the modelling of the CB₂ receptor and their ligands²⁰ as well as on receptor mutations,²⁶ it can be concluded that the design of novel CB₂ selective antagonists or agonists by CB₂ receptor modelling or virtual screening is still a challenging task.^{27–30} It is interesting

^{*} Corresponding author. Tel.: +31 (0)294 479731; fax: +31 (0)294 477138. *E-mail address:* jos.lange@solvay.com (J.H.M. Lange).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2009.12.032

to note that both the selective CB_1 receptor antagonist rimonabant³¹ and the selective CB_2 receptor antagonist **1** contain a 5-arylpyrazole-3-carboxamide scaffold. This intriguing observation prompted us to start CB_2 receptor antagonist design efforts based on our³² CB_1 antagonistic 1,2-diarylimidazoles **4** which can be considered as bioisosters of rimonabant (Scheme 1). The preference for the imidazoles as a starting point for the design of CB_2 selective antagonists was fuelled by the generally observed^{31,32} slightly higher CB_2 receptor affinities in the 1,2-diarylimidazole series as compared to the corresponding 1,5-diarylpyrazoles.

It was noted that the 1-aryImethyl moiety of **1** adds significant molecular weight and lipophilicity³³ to the molecule. Since, we were particularly interested in novel CB₂ receptor antagonist chemotypes with high ligand efficiencies³⁴ and favourable log *P* values, attention was given to the chemotype **5** wherein the large aryImethyl group of **1** is replaced by a considerably smaller substituent³⁵ R¹ at the corresponding imidazole 2-position. Removal of the original 2-aryl moiety in **4** was furthermore anticipated to have a detrimental effect on the CB₁ activity of the compounds, based on our extensive CB₁ SAR knowledge, thereby increasing CB₂/CB₁ subtype selectivity^{36,37} In addition, the carboxamide *N*-piperidinyl substituent in **4** was replaced by a lipophilic substituent comparable to the trimethylbicyclo[2.2.1]heptane group in **1**.

In concreto, these design considerations led to a series of fifteen novel imidazole derivatives **6–20**. The synthesis of compound **6** is depicted in Scheme 2. The commercially available ester **21** was reacted with benzeneboronic acid in the presence of a catalytic amount of Cul to afford **22** in a modest yield. Weinreb amidation³⁸ of **22** with (–)-*cis*-myrtanylamine gave the imidazole **6** in 65% yield.

The synthesis of the imidazoles 7-13 is depicted in Scheme 3. The commercially available oxo-esters 23-25 were reacted with NaNO₂ to furnish the oximes 26-28. Subsequent catalytic reductive acetylation with acetic anhydride afforded the crude compounds 29-31 which were cycloaromatized with aniline in butyronitrile in the presence of trifluoroacetic acid to the imidazoles **32–34**. This sequence of reactions constitutes a powerful route to the synthesis of 1-arvl-2.5-dialkylimidazole-4-carboxylates. It is interesting to note that our optimized reaction conditions led to considerable higher yields as well as less by-product formation as compared with the original procedure³⁹ which consisted of heating in xylene. Ester hydrolysis of 32-34 delivered the corresponding acids 35-37 in quantitative yield. The target compounds 7-13 were obtained from 35-37 via amidation reactions in the presence of a coupling reagent (either HBTU or CIP) in yields ranging from 60-72%.

The target compounds **14** and **15** were prepared⁴⁰ according to Scheme 4. The nitroacrylates **38** and **39** were cycloaromatized under reductive conditions with triethylorthopropionate to the 2ethylimidazoles **40** and **41**, respectively. Ester **40** was hydrolyzed

Scheme 2. Reagents and conditions: (a) $C_6H_3B(OH)_2$, Cul, EtOH/H₂O, reflux, 60 h (26%); (b) (-)-*cis*-myrtanylamine, Al(CH₃)₃, CH₂Cl₂, 35 °C, 16 h (65%).

under basic conditions to the carboxylic acid **42**, which was then amidated with 1-adamantamine HCl to provide target compound **14**. Compound **41** was converted in a straightforward Weinreb amidation³⁸ to **15**.

The synthesis of the imidazoles **16–18** is depicted in Scheme 5. The ester intermediate **43** was prepared from the corresponding nitroacrylate analogously⁴⁰ to the method described in Scheme 4. Ester hydrolysis of **43**, followed by amidation with 1-adamantamine-HCl led to the carboxamide **44**. Subsequent regioselective lithiation of **44** with the strong non-nucleophilic base LDA, followed by treatment with an electrophile led to the target compounds **16–18** in reasonable yields. It is interesting to note that this strategy provides a nice alternative for the synthesis of 4alkylated imidazoles such as **8** and **12**. Compounds **8** and **12** were obtained from **44** via the reaction with CH₃I and C₂H₅I in 70% and 41% yields, respectively.

The 2,5-dichloroimidazole derivative **19** was prepared as shown in Scheme 6. The dicarboxylic acid **45** was mono-decarboxylated in acetic anhydride and subsequently esterified with sulfuric acid in ethanol to **46**. N-Arylation with benzeneboronic acid in the presence of CuCl gave a regioisomeric mixture from which **47** was separated by flash chromatography. Basic hydrolysis of the ester group and subsequent amidation with adamantamine-HCl afforded **48**. Prolonged chlorination⁴¹ of **48** with *N*-chlorosuccinimide eventually led to the incorporation of two chloro atoms at the imidazole nucleus and thereby produced the target compound **19**.

The cyclohexylimidazole analogue **20** was prepared according to Scheme 7. The nitroacrylate⁴⁰ **49** was reacted with cyclohexylamine to produce the corresponding cyclohexylamino derivative **50** in low yield. Subsequent cycloaromatization under reductive conditions with triethylorthoacetate gave the imidazole ester **51** which was efficiently converted via a Weinreb amidation³⁸ with 1-adamantamine-HCl to **20**.

The pharmacological data of the reference compounds **1–3** and target compounds **6–20** are depicted in Table 1. The observed order of CB₂ receptor affinities and CB₁/CB₂ receptor subtype selectivities of the reference compounds **1–3** matches the reported data.^{16,18,19}

Scheme 1. Design concept of novel imidazoles 5 as selective cannabinoid CB₂ receptor antagonists from CB₁ receptor antagonists 4.

Download English Version:

https://daneshyari.com/en/article/1372091

Download Persian Version:

https://daneshyari.com/article/1372091

Daneshyari.com