FISEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Antiviral effect of ribonuclease conjugated oligodeoxynucleotides targeting the IRES RNA of the hepatitis C virus

Carly Gamble ^{a,d}, Maud Trotard ^{b,d,e}, Jacques Le Seyec ^{b,d,e}, Valérie Abreu-Guerniou ^{a,c,d}, Nicolas Gernigon ^c, Fabienne Berrée ^c, Bertrand Carboni ^c, Brice Felden ^{a,d}, Reynald Gillet ^{a,d,*}

- ^a Université de Rennes 1, UPRES JE 2311, INSERM U835, Biochimie Pharmaceutique, 2, Avenue du Prof. Léon Bernard, 35043 Rennes, France
- ^b INSERM U522, Hôpital Pontchaillou, Avenue Henri Le Guilloux, 35033 Rennes, France
- ^c Université de Rennes 1, UMR CNRS 6226, Sciences Chimiques de Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France
- ^d IFR 140 Génomique Fonctionnelle Agronomie et Santé, Université de Rennes 1, France
- ^e Equipe Associée SERAIC, Université de Rennes 1, Rennes, France

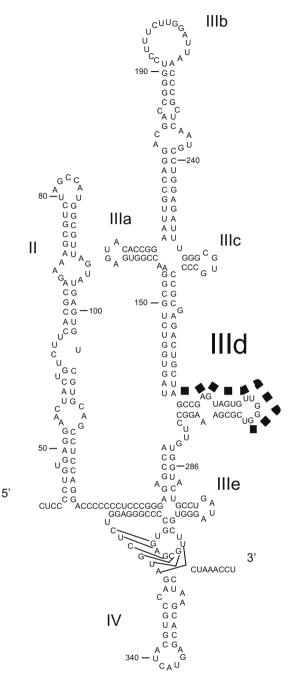
ARTICLE INFO

Article history: Received 27 March 2009 Revised 27 April 2009 Accepted 27 April 2009 Available online 4 May 2009

Keywords: Hepatitis C virus Imidazole Antisense oligodeoxynucleotides

ABSTRACT

Hepatitis C virus (HCV) translation initiation is mediated by a highly structured and conserved RNA, termed the Internal Ribosome Entry Site (IRES), located at the 5'-end of its single stranded RNA genome. It is a key target for the development of new antiviral compounds. Here we made use of the recently developed HCV cell culture system to test the antiviral activity of artificial ribonucleases consisting of imidazole(s) linked to antisense oligodeoxynucleotides targeting the HCV IRES. Results from the cell culture model indicate that the naked antisense oligodeoxynucleotide displayed an efficient antiviral activity. Despite the increased activity observed with the addition of imidazole moieties when tested with the cell-free system, it appears that these improvements were not reproduced in the cellular model.


 $\ensuremath{\text{@}}$ 2009 Elsevier Ltd. All rights reserved.

Chronic hepatitis C virus (HCV) infection affects more than 170 million people worldwide. The standard treatment consists of a combination of pegylated interferon-alpha and ribayirin. However, although such treatment is somewhat successful on HCV genotypes 2 and 3, it is less effective with genotypes 1 and 4. This lack of activity, the existence of some severe adverse side effects, contraindications and the emergence of HCV drug resistance limit efficacy and urge for the development of new therapies. Among the therapeutic targets of HCV, its genomic RNA 5'-untranslated region (5'-UTR) appears to be a good candidate for molecular therapy. HCV has evolved an unusual mode of translation initiation that is mediated by a highly structured RNA, termed Internal Ribosome Entry Site (IRES), located at the 5'-end of its 9.5-kb nucleotide RNA genome.² Contrary to the canonical cap-dependent initiation of most eukaryotic mRNAs, the HCV IRES can recruit 40S ribosomal subunits independently of either an m7G-cap structure at the mRNA 5'-end or the scanning of the viral mRNA. This allows simplified and efficient translation of its genomic RNA.³ The conserved secondary structure of the HCV IRES comprises ~340 nucleotides, encompassing three main structural domains II to IV (Fig. 1).

E-mail address: reynald.gillet@univ-rennes1.fr (R. Gillet).

The two large helical domains termed II and III are bridged by a pseudoknot to domain IV that is a short stem-loop. Domain III associates with the outer surface of the 40S ribosomal small subunit platform and is required for the high affinity interaction of the IRES with the latter, while domain II contacts the head of the ribosomal subunit. Both structural domains interact with the multisubunit initiation factor eIF3.4 Among the complex structured regions of the HCV IRES, subdomain IIId adopts the well characterized loop E motif. It plays an important role during the early steps of ribosome recognition and therefore represents a potential target for structure-based drug design. 5 Accordingly, aptamers targeted to domain IIId were generated by in vitro selection (SELEX) and tested both in a cell-free system and in cell culture. This was done using transient transfection and a reporter mRNA where translation was under the control of the HCV IRES.⁶ Antisense molecules targeting the IRES can only prevent the translation of the HCV polyprotein. In order to improve their activity, we recently developed a strategy which combines the binding affinity of the antisense oligodeoxynucleotides (AS-ODNs) with the capability of artificial ribonucleases to cleave the RNA at specific locations.⁷ Conjugates were synthesized by coupling imidazole moieties, known to mimic RNase A catalytic centers,8 to AS-ODNs whose sequences were inspired by RNA aptamers targeting domain IIId.⁶ Therefore, these compounds should disrupt the HCV life cycle by preventing translation and replication. In the present study we investigated the toxicity and antiviral activity of the most efficient of these

^{*} Corresponding author at present address: UMR CNRS 6026 Equipe Structure et Dynamique des Macromolécules, Campus de Beaulieu 35042 RENNES Cedex, France. Tel.: +33 2 23 23 45 07; fax: +33 2 23 23 50 52.

Figure 1. Secondary structure of the IRES of the HCV genomic RNA. The predicted binding site of the 17-mer antisense oligodeoxynucleotide **AS-ODN** used in this study within the domain IIId sequence is indicated (dashed).

compounds in vitro by making use of the recently developed propagation system of infectious HCV particles in cell culture (HCVcc).⁹ This system reproduces the entire life cycle of the virus in a hepatic cell line. In order to improve their activity, a new original compound containing two imidazole moieties instead of one was also designed, produced and assessed.

To facilitate screening of the compounds, we used a modified HCVcc with a genome that contains a luciferase reporter gene. The naked antisense DNA (**AS-ODN**) and non specific DNA (**NS-ODN**) sequences used for this study were as follows: **ACCCAACACTACTCGGC** and **CAACCCTAGCCCGTCAA** respectively. In the first series of experiments, the naked **AS-ODN** or the **AS-ODN** coupled with either 5′-imidazole or with 3′-imidazole (Fig. 2) were

microporated into Huh7.5.1 cells 17 h prior to infection with HCVcc. The ability of the oligodeoxynucleotides to interfere with establishment of HCV replication was then measured relative to that obtained with the *NS-ODN*, consisting of a randomly scrambled sequence of the *AS-ODN*. The growth and viability of the cells was not affected by any of the oligodeoxynucleotides.¹¹

The presence of the naked **AS-ODN**, the 5'-imidazole or the 3'-imidazole conjugates within the cells reduced, in a dose-dependent manner and up to 50%, the level of viral replication established in Huh7.5.1 after their infection with HCVcc. The maximum antiviral activity was achieved at a 100 nM concentration after 20 h of infection. No further inhibition was achieved by increasing the concentration of oligodeoxynucleotides to 1000 nM (Fig. 3). Unlike the results obtained with the cell-free system, the addition of an imidazole moiety to either the 3' or 5' end of the naked AS-ODN did not result in an increase in their antiviral properties when tested on the HCVcc propagation system. This result suggested that in cells, the process of cleavage by a single imidazole was not the main factor responsible for activity as was previously observed in the cell-free system.

To better mimic the catalytic center of RNase A, we prepared a novel compound containing two imidazole moieties. The design and synthesis of such bifunctional catalysts have received considerable attention, 12 since residues His 12 and His 119 in the catalytic site of RNase A serve respectively as base and acid catalysts and the protonated side chain of Lys-41 stabilizes the pentacoordinated phosphorous intermediate during transition state.¹³ The bisimidazole-containing AS-ODN was synthesized by standard protocol from the acid 8 (Scheme 1). First, urocanic acic 1 was esterified with methanol¹⁴ and protected as its N-dimethylsulfamoyl derivative 3. Reduction with diisobutylaluminium hydride and treatment with thionyl chloride afforded the allylchloride **5**. Sodium salt of diethylmalonate was then alkylated with two equivalents of 5 to give the diester 6, which was hydrogenated in the presence of Pd on charcoal. Deprotection and decarboxylation were simultaneously achieved by heating at reflux in 6 M HCl. Analysis of the reaction mixture revealed the concomitant formation of dimethylamine hydrochloride. Final purification by ion exchange chromatography on Dowex H⁺ 50W8 gave the desired compound 8.16 The coupling reaction was carried out in the presence of PyBOP, HOBT and N-methylmorpholine in DMF at the 5'-end of the oligodeoxynucleotide, since the 5' mono-imidazole displays the highest activity in vitro.7,17

First, the antiviral activity of this bis-imidazole compound was tested in a cell-free system and compared to the naked antisense and to the mono-imidazole compounds. The specific cleaving activity of the bis-imidazole coupled to the **AS-ODN** was also confirmed by using an in vitro transcribed and labeled HCV IRES RNA fragment. The inhibitory effects of the bis-imidazole conjugate on HCV IRES driven translation of a *Renilla* luciferase reporter mRNA were also confirmed by using a reticulocyte based translation assay. However, despite the use of two imidazole groups within the same molecule, a similar level of viral translation inhibition was achieved as compared to the 5′-mono imidazole compound, whatever the concentration used (not shown).

We then decided to investigate the action of this modified oligo-deoxynucleotide in a more physiological system by using hepatic cell cultures infected with HCVcc. The optimal concentration determined in the previous experiments (100 nM) was the concentration chosen to test the bis-imidazole conjugate. As observed with the cell-free approach, there was no improvement in the antiviral activity of the **AS-ODN** when coupled to two imidazoles instead of one. Indeed, whatever the compound (naked or coupled **AS-ODN**) previously introduced into the cell, the establishment of viral replication after HCVcc infection was inhibited by approximately half (Fig. 4).

Download English Version:

https://daneshyari.com/en/article/1372243

Download Persian Version:

https://daneshyari.com/article/1372243

<u>Daneshyari.com</u>