ELSEVIER

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Anti-AIDS agents 87. New bio-isosteric dicamphanoyl-dihydropyranochromone (DCP) and dicamphanoyl-khellactone (DCK) analogues with potent anti-HIV activity

Hong-Shan Liu^a, Shi-Qing Xu^a, Ming Cheng^a, Ying Chen^{a,*}, Peng Xia^a, Keduo Qian^b, Yi Xia^b, Zheng-Yu Yang^b, Chin-Ho Chen^c, Susan L. Morris-Natschke^b, Kuo-Hsiung Lee^{b,d,*}

ARTICLE INFO

Article history: Received 24 June 2011 Revised 26 July 2011 Accepted 27 July 2011 Available online 3 August 2011

Keywords:

2'-Monomethyl-1'-oxa-DCP 2'-Monomethyl-1'-thia-DCP

2-Ethyl-1'-thia-DCP

4-Methyl-1'-thia-DCK Anti-HIV activity

ABSTRACT

Six 3'R,4'R-di-O-(S)-camphanoyl-2',2'-dimethyldihydropyrano[2,3-f]chromone (DCP) and two 3'R,4'R-di-O-(S)-camphanoyl-(+)-cis-khellactone (DCK) derivatives were designed, synthesized, and evaluated for inhibition of HIV-1_{NL4-3} replication in TZM-bl cells. 2-Ethyl-2'-monomethyl-1'-oxa- and -1'-thia-DCP ($\bf 5a, 6a$), as well as 2-ethyl-1'-thia-DCP ($\bf 7a$) exhibited potent anti-HIV activity with EC₅₀ values of 30, 38 and 54 nM and therapeutic indexes of 152.6, 48.0 and 100.0, respectively, which were better than or comparable to those of the lead compound 2-ethyl-DCP in the same assay. 4-Methyl-1'-thia-DCK ($\bf 8a$) also showed significant inhibitory activity with an EC₅₀ of 128 nM and TI of 237.9.

© 2011 Elsevier Ltd. All rights reserved.

In our previous research, 3'R,4'R-di-O-(S)-camphanoyl-(+)-ciskhellactone (DCK, 1, Fig. 1) demonstrated extremely potent inhibitory activity against HIV-1 replication in H9 lymphocytic cells.¹ Subsequently, hundreds of DCK and some of its ring-A positional isomer DCP (3'R,4'R-di-O-(S)-camphanoyl-2',2'-dimethyl-dihydropyrano[2,3-f]chromone, 2, Fig. 1) derivatives have been designed, synthesized and screened for anti-HIV activity in H9 lymphocytes, MT-2 cell lines, and MT-4 cell lines.²⁻⁸ 4-Methyl-DCK (3, Fig. 1) and 2-ethyl-DCP (4, Fig. 1) showed the most promising anti-HIV results in these two series. Structure-activity relationship (SAR) studies found that DCP derivatives exhibited better anti-HIV activity than the corresponding DCKs; ⁸ 2′-α-monomethyl-4-methyl DCK derivatives were more potent than 2'-gem-dimethyl DCKs; bio-isosteric analogues with a sulfur rather than oxygen in the ring-C of DCK exhibited remarkable inhibitory effects on HIV-1 replication;^{9,10} and a 3',4'-dicamphanoyl moiety is indispensable for anti-HIV activity. 11 Considering these SAR research results, we have now designed and synthesized 2'-monomethyl-DCP (5, 1'-oxa; 6, 1'-thia), 2-ethyl-1'-thia-DCP (7), and 4-methyl-1'-thia-DCK (8) analogues to

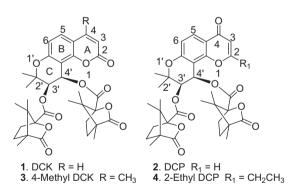


Figure 1. Structures of previously synthesized DCK and DCP analogues (1-4).

further explore the pharmacophores of the 2'-position and the bioisosteric effect at the 1'-position. This paper reports their synthesis and anti-HIV bioassay data.

The synthetic routes to **5a**, **5b**, **6a** and **6b** are shown in Scheme 1. The intermediate 2-ethyl-7-mercapto-4*H*-chromen-4-one (**12**) was obtained by reacting 2-ethyl-7-hydroxy-4*H*-chromen-4-one (**9**) with dimethylthiocarbamoyl chloride in EtOH in

^a Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China

b Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA

^c Duke University Medical Center, Durham, NC 27710, USA

^d Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan

 $[\]ast$ Corresponding authors. Tel.: +86 21 51980116 (Y.C.); tel.: +1 919 962 0066; fax: +1 919 966 3893 (K.H.L.)

E-mail addresses: yingchen71@fudan.edu.cn (Y. Chen), khlee@unc.edu (K.-H. Lee).

Scheme 1. Reagents and conditions: (i) Dimethylthiocarbamoyl chloride, EtOH, K₂CO₃, rt; (ii) 240 °C, N₂; (iii) KOH, CH₃OH, N₂, reflux; (iv) 3-chloro-1-butyne, K₂CO₃, KI in DMF or acetone, rt; (v) N,N-diethylaniline, reflux; (vi) K₂OsO₂(OH)₄, (DHQ)₂-PHAL, K₃Fe(CN)₆, K₂CO₃ in *t*-butanol/H₂O (v/v = 1:1), ice bath; (vii) (S)-camphanic chloride, DMAP in CH₂Cl₂, rt.

the presence of anhydrous potassium carbonate, followed by a rearrangement at 240 °C, then hydrolysis with methanolic KOH and acidification with HCl. Compounds **9** and **12** were treated with 3-chloro-1-butyne in dimethyl formamide (DMF) or acetone in the presence of anhydrous potassium carbonate and potassium iodide at room temperature to produce the propargyl ethers **13** and **14**, followed by thermal rearrangement in refluxing *N*,*N*-diethylaniline to form intermediates **15** and **16**. Sharpless dihydroxylation (AD) of **15** and **16** afforded dihydroxy derivatives **17a**/17b and **18a**/18b, respectively, as diastereoisomeric mixtures. Target compounds **5a** and **5b** were obtained by acylation of **17a** and **17b** with (*S*)-(–)-camphanic chloride in CH₂Cl₂ at room temperature with 4-

dimethylaminopyridine (DMAP) as acid scavenger. Compounds **6a** and **6b** were synthesized by the same procedure from **18a** and **18b**. The pure diastereoisomers **5a**, **5b**, **6a**, and **6b** were obtained by separation with column chromatography on silica gel [petroleum ether/ethyl acetate, 3:1 (v/v)].

The preparation of **7a** and **7b** is illustrated in Scheme 2. 2-Ethyl-7-mercapto-4H-chromen-4-one (**12**) was treated with 3-chloro-3-methyl-1-butyne in EtOH/H₂O (v/v = 1:1) in the presence of potassium hydroxide at room temperature to produce the propargyl ether **19**, followed by thermal rearrangement in refluxing N,N-diethylaniline to form intermediate **20**. Sharpless AD of **20** afforded dihydroxy derivatives **21a** and **21b**. Target compounds

Scheme 2. Reagents and conditions: (i) 3-Chloro-3-methyl-1-butyne, KOH, N_2 , EtOH/ H_2O (v/v = 1:1), rt; (ii) N_1 , N_2 -diethylaniline, reflux; (iii) $K_2OSO_2(OH)_4$, (DHQ)₂-PHAL, $K_3Fe(CN)_6$, K_2CO_3 in t-butanol/ H_2O (v/v = 1:1), ice bath; (iv) (S)-camphanic chloride, DMAP in CH_2Cl_2 , rt.

Download English Version:

https://daneshyari.com/en/article/1372554

Download Persian Version:

https://daneshyari.com/article/1372554

<u>Daneshyari.com</u>