ELSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Novel 1-(2-aminopyrazin-3-yl)methyl-2-thioureas as potent inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2)

Songnian Lin*, Matthew Lombardo, Sunita Malkani, Jeffrey J. Hale, Sander G. Mills, Kevin Chapman, James E. Thompson, Wen Xiao Zhang, Ruixiu Wang, Rose M. Cubbon, Edward A. O'Neill, Silvi Luell, Ester Carballo-Jane, Lihu Yang

Merck Research Laboratories, Rahway, NJ 07065, USA

ARTICLE INFO

Article history: Received 25 March 2009 Revised 18 April 2009 Accepted 21 April 2009 Available online 24 April 2009

Keywords: MAPKAP kinase 2 MK-2 TNFα Inflammation Rheumatoid arthritis Aminopyrazine Thiourea

ABSTRACT

Novel 1-(2-aminopyrazin-3-yl)methyl-2-thioureas are described as inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2). These compounds demonstrate potent in vitro activity against the enzyme with IC_{50} values as low as 15 nM, and suppress expression of TNF α in THP-1 cells and in vivo in an acute inflammation model in mice. The synthesis, structure–activity relationship (SAR), and biological evaluation of these compounds are discussed.

© 2009 Elsevier Ltd. All rights reserved.

Tumor necrosis factor- α (TNF α) is a cytokine that is over-produced in several inflammatory disease states such as rheumatoid arthritis (RA).\(^1\) Anti-TNF α biologics have been very successful in the treatment of several autoimmune diseases like RA, Crohn's disease and psoriasis.\(^2\) Considerable effort has been devoted to the search for biological targets which are amenable for modulation with small molecules and a number of targets have been identified. Among them, p38 mitogen-activated protein kinase (MAPK) is most notable,\(^3\) with inhibitors of p38 MAPK demonstrating efficacy in preclinical in vivo models as well as in RA patients in clinical trials.\(^4\)

Mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK-2 or MK-2) is a direct substrate of p38 MAPK and plays a critical role in the signal transduction pathway regulating the production of TNFα.⁵ MK-2 knockout mice produce significantly less TNFα when challenged with lipopolysaccharide (LPS),^{5a} in addition to being fertile, healthy, and resistant to developing diseases in arthritis models.^{5,6} MK-2 inhibition therefore may provide an effective treatment for TNFα-mediated diseases. Recently, several structural classes of compounds have been reported to be inhibitors of MK-2, among them aminocyanopyridines,⁷ pyrrolo-

Our effort to develop small molecule MK-2 inhibitors began with high throughput screening that identified several 1-(2-aminopyrazin-3-yl)methyl-2-thioureas as moderate MK-2 inhibitors as represented by phenyl analog **1a** (Fig. 1). Compound **1a** exhibits a 2.0 μ M IC₅₀ value in an in vitro MK-2 enzyme assay¹³ and 7.9 μ M IC₅₀ value in a cell-based assay that measures LPS-stimulated TNF α production from THP-1 cells.¹⁴ This prompted us to start a chemistry program to further explore this class of compounds. In this Letter, we would like to disclose a series of potent MK-2 inhibitors discovered through this effort.

Compounds **1–12** in Figures 1 and 2 and Tables 1–7 were synthesized according to Schemes 1 and 2. Substituted 2-aminopyrazin-3-carbamides **13**¹⁵ were converted to corresponding cyanides

Figure 1. HTS hit 1a and its analog 1b.

pyridones,⁸ tertrahydro-β-carbolines,⁹ tricyclic indole derivatives,¹⁰ pyrrolo-pyrimidones,¹¹ and benzothiophenes.¹²

^{*} Corresponding author. Tel.: +1 732 594 0585; fax: +1 732 594 2840. E-mail address: Songnian_lin@merck.com (S. Lin).

R=

Figure 2. Preliminary SAR on aminopyrazine.

14 upon treatment with POCl₃ in DMF followed by aqueous HCl. Reduction of cyanides **14** with LiAlH₄ afforded desired amines **15** in good yields. Treatment of amines **15** with various of amines in the presence of 1,1'-thiocarbonyldiimidazole (TCI), or directly with isothiocyanides, provided corresponding 1-(2-aminopyrazin-3-yl)-methyl-2-thioureas **1a** and **3–12** in moderate to high yields (Scheme 1). Urea **1b** was prepared readily from amine **15a** with phenyl isocyanate, and compounds **2a–l** were prepared straightforwardly from phenyl isothiocyanate **16** with corresponding amines (Scheme 2).

We began the SAR study on compound 1a with a preliminary exploration of the minimal structural features that are required for MK-2 activity. A simple replacement of the central thiourea linker with an urea linker resulted in compound 1b (Fig. 1), which is inactive at $40 \,\mu\text{M}$ concentration in the MK-2 enzyme assay. We

Table 1Preliminary SAR on phenyl moiety

Compound	R	MK-2 IC ₅₀ (μM)
1a	Ph	2.0
3a	Et	20
3b	i-Pr	13
3c	t-Bu	2.5
3d	c-Pr	12
3e	<i>c</i> -Pentyl	53
3f	c-Heptanyl	35
3g	Bn	36
3h	PhCH ₂ CH ₂	>50
3i	MeOCH ₂ CH ₂	22
3j	Et ₂ NCH ₂ CH ₂ CH ₂	>50
3k	Benzoyl	91
31	1-Naphthyl	3.2

Table 2 SAR on the aminopyrazine moiety

$$\begin{array}{c|c} S & NH_2 \\ N & N & N \\ H & N & N \\ S & S \\ R^1 \end{array}$$

Compound	R ¹	R ²	MK-2 IC ₅₀ (μM)
1a	Cl	Н	2.0
4a	Н	Н	32
4b	Me	Н	4.0
4c	Et	Н	1.5
4d	n-Pr	Н	2.3
4e	CF ₃	Н	>50
4f	c-Pr	Н	0.47
4g	Ph	Н	~50
4h	Cl	NMe_2	>50
4i	Cl	OEt	>50
4 j	Cl	SMe	>50

further explored the right-hand side aminopyrazine subunit. As shown in Figure 2, aminopyrazine was replaced with aminopyrimidines (**2a** and **2b**), aminopyridazine (**2c**), aminopyridine (**2d**), pyridines (**2e** and **2f**), quinolines (**2j**), isoquinolines (**2i**), naphthylenes (**2k**), and benzenes (**2g** and **2h**), and all these replacements resulted in the loss of activity ($IC_{50} > 40 \mu M$). The deletion of the 2-amino group and the replacement of a 5-Cl with a 6-methyl

Table 3 SAR on the phenyl ring

Compound	R	MK-2 IC ₅₀ (μM)	
5a	4-Me	2.7	
5b	4-Cl	3.7	
5c	4-MeO	1.9	
5d	4- <i>i</i> -Pr	2.6	
5e	4- <i>t</i> -Bu	13.7	
5f	4-Br	3.1	
5g	4-NO ₂	9.9	
5h	4-CN	6.9	
5i	4-Tetrazole	>40	
5j	4-BnO	2.7	
5k	4-Ac	6.9	
51	4-EtOC(=O)-	10.7	
5m	4-NMe ₂	7.0	
5n	4-(Morphorin-1-yl)	17.3	
50	4-AcNH-	5.2	
5p	4-NH ₂	2.0	
5q	4-BnOC(=O)NH-	0.46	
6a	2-Me	3.6	
6b	2-Cl	1.1	
6c	2-MeO	2.6	
6d	2-F	2.0	
6e	2-MeS	2.5	
6f	2-Ph	>20	
7a	3-Me	9.3	
7b	3-Cl	11.3	
7c	3-MeO	14.5	
8a	2,4-Di-MeO	2.5	
8b	2,4-Di-Cl	4.3	
8c	3,4-Di-MeO	\sim 40	
8d	3,4-Di-Cl	\sim 40	
8e	3,5-Di-Cl	27	

Download English Version:

https://daneshyari.com/en/article/1372621

Download Persian Version:

https://daneshyari.com/article/1372621

<u>Daneshyari.com</u>