Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Steven W. Kortum^{*}, Rhonda M. Lachance, Barbara A. Schweitzer[†], Gopichand Yalamanchili[‡], Hayat Rahman[‡], Michael D. Ennis, Rita M. Huff, Ruth E. TenBrink

Pfizer Global Research and Development, Pfizer Inc., St. Louis Laboratories, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA

ARTICLE INFO

ABSTRACT

Article history: Received 29 July 2009 Revised 14 August 2009 Accepted 14 August 2009 Available online 20 August 2009

Keywords: P2Y₁₂ Thienopyrimidine Platelet aggregation inhibition

The success of Plavix[®] (clopidogrel) in inhibiting platelet aggregation and the subsequent discovery of the P2Y₁₂ receptor as the mechanism of action validates the inhibition of the P2Y₁₂ receptor as a viable strategy for platelet aggregation inhibition.^{1,2} Whereas clopidogrel is an irreversible inhibitor of the P2Y₁₂ receptor, we were interested in developing a reversible inhibitor.³ AZD-6140, an orally active P2Y₁₂ reversible inhibitor in clinical evaluation for acute coronary syndrome (ACS), shown in Figure 1 has a total of six chiral centers (four contiguous).⁴ One of our goals was to develop a less complex adenosine diphosphate (ADP)-stimulated P2Y₁₂ antagonist while retaining the hydrophilic and hydrophobic regions as in AZD6140.⁵

We, along with others, investigated the thienopyrimidine core as a potential candidate for platelet inhibition.⁶ Our efforts were concentrated on the central theme of a hydrophobic northern region with a hydrophilic southern region as exemplified by compound **21k**.

The synthesis of the chloro intermediates **5** and **7** are outlined in Scheme 1. Butyraldehyde **1** and methyl cyanoacetate **2** were combined in the presence of elemental sulfur and triethylamine in the classic Gewald synthesis to give aminothiophene **3** in 70% yield.^{7,8}

Aminothiophene **3** reacted with potassium cyanate in acetic acid at room temperature for 18 h to give thienopyrimidinedione **4** in 65% yield. Thienopyrimidinedione **4** was converted to the 4,6-dichlorothienopyrimidine 5 using phenylphosphonic dichloride at 150 °C and then quenched in ice water to give the desired product in >95% yield. At atmospheric pressure, thienopyrimidinone **4** and POCl₃ with catalytic *N*,*N*-dimethylformamide (DMF) gave yields ranging from 0% to 30%. Use of a sealed tube (150 °C) gave improved yields (80–95%), but for larger scale reactions, phenylphosphonic dichloride in place of phosphorus oxychloride allowed the elimination of sealed pressure vessels while maintaining high yields of 4,6-dichlorothienopyrimidine **5**. Thiophene **3** is reacted with formamide at 130 °C for 12 h to give thienopyrimidinone **6** in 75% yield. Conversion of thienopyrimidinone **6** to thienopyrimidine **7** was accomplished using thionyl chloride and DMF at 80 °C in 86% yield.

Herein we describe the design and synthesis of a novel series of potent thienopyrimidine P2Y₁₂ inhibitors

and the negative impact protein binding has on the inhibition of platelet aggregation.

Scheme 2 outlines the synthesis of the C-6 hydrogen analogs. Displacement of the C-4 chloro group of **7** with boc-piperazine **8** was accomplished at room temperature in the presence of diisopropylethylamine (DIEA) to give thienopyrimidine **9** in 70–90% yield. For exploration of the substituents at C-6, the BOC group of

Figure 1. Comparison of AZD6140 to the thienopyrimidine compound **21k** highlighting the hydrophilic and hydrophobic regions of each molecule.

^{*} Corresponding author. Tel.: +1 636 247 3592.

E-mail address: steve.kortum@pfizer.com (S.W. Kortum).

[†] Present address: Monsanto Corp., St. Louis, MO, USA.

[‡] Retired.

Scheme 1. Synthesis of the thienopyrimidine cores 5 and 7. Reagents and conditions: (a) sulfur, triethylamine, DMF, rt, 18 h (70%); (b) acetic acid, H₂O, KOCN, rt, 18 h (64%); (c) phenylphosphonic dichloride, 150 °C, 3 h (95%); (d) formamide, ammonium formate, 135 °C, 12 h (75%); (e) thionyl chloride, DMF, 80 °C, 3 h (86%).

Scheme 2. Synthesis of C-6 hydrogen-substituted thienopyrimidine analogs 11a-h. Reagents and conditions: (a) THF, DIEA, rt, 6 h (70–90%); (b) hydrochloric acid, methanol, rt, 3 h (quant); (c) DMF, DIEA, rt, 18 h (30–90%).

thienopyrimidine **9** was removed using HCl in methanol to give thienopyrimidine **10** in quantitative yield. Thienopyrimidine **10** was either acylated with the appropriate acid chloride using DIEA as base at room temperature to give thienopyrimidines **11a-h** in 30–60% yield or coupled with the appropriate acid using *O*-(7-aza-benzotriazol-1-yl)-*N*,*N*',*N*'-tetramethyluronium hexafluorophosphate (HATU) in comparable yields.

Scheme 3 outlines the synthesis of the C-6 nitrogen analogs. BOC deprotection of **12** and acylation of piperazine **13** were accomplished using the same procedures in similar yields to those of the C-6 hydrogen analogs. The C-6 chloro group of **14** was displaced using an appropriate amine with DIEA in 1-methyl-2-pyrrolidinone (NMP) at 105 °C to give the corresponding thienopyrimidines 15a–1 in 40–90% yield.

Scheme 4 outlines the synthesis of urea analogs **21a–k**. The C-6 chloro group of **12** is displaced with sodium azide in NMP at 130 °C to give azide **16** in 77% yield. Azide **16** was reduced using trimethylphosphine in tetrahydrofuran (THF) to give amine **17** in 85% yield. Amine **17** was heated in pyridine with ethyl-3-isocyanatopropionate at 80 °C to give urea **18** (81%) followed by BOC deprotection to give **19** in quantitative yield. Acylation of **19** to give the intermediate esters **20a–k** in 30–60% yield and subsequent hydrolysis was accomplished in 50–90% yield using lithium hydroxide to give thienopyrimidines **21a–k**.

The $P2Y_{12}$ binding assay used for this study uses recombinant human $P2Y_{12}$ transfected Chinese Hamster Ovary (CHO) cell mem-

Scheme 3. Synthesis of the C-6 amino-substituted thienopyrimidine analogs 15a-1. Reagents and conditions: (a) THF, DIEA, rt, 6 h (70–90%); (b) hydrochloric acid, methanol, rt, 3 h (quant); (c) DMF, DIEA, rt, 1 h (94%); (d) DIEA, NMP, 130 °C, 18 h (40–90%).

branes.⁹ The P2Y₁₂ binding assay with added protein, human serum albumin (HSA) and alpha-1 acid glycoprotein (AGP), was used to give a readout on the protein binding of our inhibitors before going into the human platelet rich plasma (hPRP) aggregation functional assay.^{10,11} A large portion of the discrepancies between the P2Y₁₂ binding and functional assays, nM versus μM, are likely due to the increased amount of protein in the hPRP aggregation assay as compared with the P2Y₁₂ binding assay.

In keeping with the hydrophobic nature of the northern substituent we first looked at several hydrophobic substituents on the piperazine ring while keeping C-6 as H (Table 1). Biphenyl **11c** was the most active compound in the P2Y₁₂ binding assay, followed by naphthyl carbamate **11g**, indicating that larger, hydrophobic groups were preferred. All of the compounds lacking a C-6 substituent displayed poor activity in the hPRP aggregation assay.

Table 2 lists analogs containing C-6 nitrogen based substituents with the 4-biphenylacetyl group as the northern piperazine substituent. Substituents with carbonyl groups directly attached to (**21k**) or one atom removed from (**15h** and **15k**) the C-6 nitrogen were the most active in both the $P2Y_{12}$ binding and hPRP aggregation assays. Moving the carbonyl even further away from the C-6 nitrogen, as in **15c** and **15g**, resulted in a 10–15-fold decrease in

Download English Version:

https://daneshyari.com/en/article/1373109

Download Persian Version:

https://daneshyari.com/article/1373109

Daneshyari.com