Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and evaluation of novel phosphate ester analogs as neutral sphingomyelinase inhibitors

Hiroshi Imagawa ^{a,*}, Masataka Oda ^a, Takayuki Takemoto ^a, Rieko Yamauchi ^a, Tomomi Yoshikawa ^a, Hirofumi Yamamoto ^a, Mugio Nishizawa ^{a,*}, Hironobu Takahashi ^b, Manabu Hashimoto ^a, Kenta Yabiku ^a, Masahiro Nagahama ^a, Jun Sakurai ^{a,*}

^a Faculty of Pharmaceutical of Sciences, Tokushima Bunri University, Tokushima, Japan
^b Institute of Pharmacognosy, Tokushima Bunri University, Tokushima, Japan

ARTICLE INFO

Article history: Received 18 March 2010 Revised 8 May 2010 Accepted 12 May 2010 Available online 15 May 2010

Keywords: Sphingomyelinase SMase Inhibitor Sphingomyelin Hydrolysis

ABSTRACT

A novel sphingomyelin inhibitor RY221B-a, which contains a bipyridyl moiety as a metal coordination site was designed based upon the mechanism of phosphate ester hydrolysis. RY221B-a was synthesized from *N*-Boc-sphingosine in three steps via selective etherification using stannyl acetal. Synthesized RY221B-a exhibited relatively-strong inhibitory activity against *Bc*-SMase ($IC_{50} = 1.2 \mu M$).

© 2010 Elsevier Ltd. All rights reserved.

Hydrolase-mediated hydrolysis of phosphate esters are fundamental reactions in a variety of important biological processes such as signal transduction, molecular recognition, energy transduction, regulation of protein function and metabolism. Sphingomyelinase (SMase¹, EC 3.1.4.12) hydrolyzes the phosphate ester-bond of sphingomyelin to generate phosphocholine and ceramide. This hydrolysis reaction is important for lipid metabolism, regulation of the immune mechanism and differentiation of cells, including angiogenesis (Fig. 1).²

Therefore, an inhibitor of SMase might be expected to modulate a wide variety of biological responses. So far, a number of naturally occurring products showing SMase inhibition have been reported.³ Several synthetic inhibitors mimicking the phosphate ester moiety by substitution with stable functional groups such as a carbamate analog, carbon-analog, and a fluorinated carbon-analog have also been developed.⁴ A detailed mechanism for the hydrolysis reaction mediated by SMase based on mutagenesis studies have been elucidated.^{5,6} Obama et al. reported that Glu-53 of *Bc*-SMase has a crucial function for a ligand for Mg²⁺ and SMase activity.^{5d} In 2006, the Sakurai group elucidated the three-dimensional structure of *Bc*-SMase from *Bacillus cereus.*⁷ Analysis of the structure suggested that the ionic bond between Glu-53 and the divalent ion such as Mg²⁺ plays an important role in hydrolysis of sphingomyelin, and the Mg²⁺ ion is

coordinated with oxygen atoms in the phosphate ester of sphingomyelin, which controls the location of the substrate (Fig. 2).⁷ We focused on the metal ion mediated-coordination between the enzyme

^{*} Corresponding authors. Tel.: +81 88 602 8448; fax: +81 88 655 3051 (H.I.). E-mail address: imagawa@ph.bunri-u.ac.jp (H. Imagawa).

⁰⁹⁶⁰⁻⁸⁹⁴X/ $\$ - see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2010.05.042

Figure 2. Design of a novel SMase inhibitor based upon substrate coordination in the active site of the enzyme.

and sphingomyelin. If the phosphate ester moiety acts as a ligand for the Mg^{2+} ion, the functional group having high coordinating ability with divalent metal ions will behave as an analog for the phosphate ester of sphingomyelin during the hydrolysis reaction. From these structural and mechanistic considerations, we designed a novel sphingomyelin analog RY221B-a (**6**) having a bipyridine moiety that acts as an efficient coordination site (Fig. 2).

The synthesis of **6** commenced with the preparation of *N*-Bocsphingosine (**7**) from serine methyl ester in five steps according to the Suzuki protocol.⁸ Deprotection of **7** was achieved by using 1 M HCl. The resulting sphingosine (**8**) was treated with hexanoyl chloride in the presence of Et₃N in CH₂Cl₂ to provide ceramide **9** in 68% yield. The introduction of bipyridyl methyl ether into ceramide **9** was achieved by the etherification method via stannyl acetal^{9,10} to give RY221B-a (**6**) along with isomer (RY221B-b, **10**) after HPLC separation in 53% and 18%, yield respectively (Scheme 1).

Scheme 1. Preparation of the novel sphingomyelin analog **6**. Reagents and conditions: (a) HCl, THF, 50 °C, 4 h, 96%; (b) hexanoyl chloride (1.0 equiv), DMAP, Et₃N, CH₂Cl₂, 0 °C, 15 min, 68%; (c) Bu₂SnO (1.0 equiv), MeOH, reflux, 6 h; (d) 6-(bromomethyl)-2,2'-bipyridine (1.2 equiv), *n*-Bu₄NF (1.2 equiv), DMF, rt, 18 h; (e) HPLC separation. Compound **6/10** (3:1, total 71% yield).

Figure 3. Inhibitory effect of **6** (trigona), **10** (square) and **11** (argyle) for the degradation of sphingomyeline liposome induced by *Bc*-SMase.

Figure 4. Inhibitory effect of **6** (argyle) and **10** (square) for the hydrolysis of ¹⁴C-sphingomyeline mediated by *Bc*-SMase.

Figure 5. Lineweaver–Burk plot analysis for **6.** trigona: only *Bc*-SMase with 10 μ M of **6.** Square: *Bc*-SMase with 5 μ M of **6**, argyle: *Bc*-SMase. In all cases, 40 ng/mL of *Bc*-SMase was used.

The sphingomyelin liposome-disruption assay was used to evaluate the synthetic compound **6** and its isomer **10** as potential SMase inhibitors.^{7,11} Compound **6** was shown to display a significant inhibitory effect against *Bc*-SMase in a concentration-dependent manner (Fig. 3). By contrast, **10** showed only weak inhibitory activity and bipyridine (**11**) displayed no detectable inhibitory action.

The detailed inhibitory activity of **6** and **10** against *Bc*-SMase were elucidated using [¹⁴C]-labeled SM.⁷ The IC₅₀ of **6** was determined to be 1.2 μ M, which is classified as one of the most potent

Download English Version:

https://daneshyari.com/en/article/1374008

Download Persian Version:

https://daneshyari.com/article/1374008

Daneshyari.com