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This Letter describes a chemical lead optimization campaign directed at VU0108370, a weak M; PAM hit
with a novel chemical scaffold from a functional HTS screen within the MLPCN. An iterative parallel
synthesis approach rapidly established SAR for this series and afforded VU0405652 (ML169), a potent,
selective and brain penetrant M; PAM with an in vitro profile comparable to the prototypical M; PAM,

BQCA, but with an improved brain to plasma ratio.
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The muscarinic acetylcholine receptors (mAChRs) are members
of the family A G-protein-coupled receptors (GPCRs) and include five
subtypes denoted M;-Ms. All five of the mAChRs are known to play
critical roles in multiple basic physiological processes and represent
attractive therapeutic targets for a number of peripheral and CNS
pathologies.! Within the mAChRs, a major challenge has been a
lack of subtype selective ligands to study the specific contribution
of discrete mAChRs in various disease states.>* To address this lim-
itation, we have focused on targeting allosteric sites on mAChRs as a
means to develop subtype selective small molecules, both allosteric
agonists and positive allosteric modulators (PAMs).>~® Moreover,
the emerging phenomenon of ligand-biased signaling requires the
development of diverse chemical scaffolds of M; ligands to success-
fully dissect of the roles of M; activation through multiple, discrete
ligand-biased signaling pathways.!%!!
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As members of the Molecular Libraries Production Center
Network (MLPCN),'? we performed a real-time cell-based cal-
cium-mobilization assay employing a rat M{/CHO cell line (Z’ aver-
aged 0.7) and screened a 63,656 member MLPCN compound library
following a triple-add protocol to simultaneously identify M;
antagonists, agonists (both orthosteric and allosteric) and positive
allosteric modulators (PAMs). This screen proved to be a major
success providing viable leads that were optimized into potent
and highly selective M; ligands (Fig. 1): an M; antagonist (1,
VU0255035, ML012),!*> an M; allosteric agonist (2, VU0357017,
MLO071),'* and both an M; PAM (3, VU0366369, ML137)"® and the
first Ms PAM (4, VU0238429, ML129)!¢ derived from a pan-
M;,M3,M5-PAM (5, VU0119498).!7-'8 However, the brain penetra-
tion (brainayc/plasmaayc=0.1) and efficacy (60% ACh Max) of 3
were poor, as was the brain penetration of the prototypical M;
PAM, BQCA (6, brainayc/plasmaayc = 0.1)1°72!; therefore, M; PAM
ligands with improved physicochemical properties for in vivo stud-
ies and novel scaffolds to address ligand-biased signaling are re-
quired. In this Letter, we describe the development of VU0405652
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Figure 1. Structures of selective M; and Ms MLPCN probes developed from hits from a triple-add functional M; HTS MLPCN screen (1-5) and BQCA (6).

(ML169),%2 a highly selective M; PAM MLPCN probe, with a novel
chemical scaffold and improved brain penetration.

Perusal of the HTS data, which also yielded the non-selective hit
5, identified a second weak M; PAM hit 7, VU0108370, with an ECsq
of ~13 pM. Confirmation of 7 from fresh powder and counter-
screening against M,—-Ms increased our enthusiasm for this highly
M; mAChR selective hit (Fig. 2); however, the CRC did not plateau,
suggesting the M; ECso was actually >13 pM. Despite the weak po-
tency, the confirmation of a novel M; PAM scaffold with high M;
selectivity initiated a lead optimization campaign to improve M;
potency while maintaining the high M,-Ms selectivity.

Our initial optimization strategy is outlined in Figure 3, and as
SAR with allosteric ligands is often shallow, we employed an iter-
ative parallel synthesis approach, along with targeted syntheses for
structures encompassing more speculative modifications. At-
tempted modifications of the Eastern oxazole-amide, although
not extensive, met with no success, returning only compounds
with undetectable activity. In a straightforward attempt to reduce
molecular weight the benzyl group attached to the indole nitrogen
was omitted, but met with a similar lack of success (ECso >10 uM)
as did the sulfide and sulfoxide congeners.

Thus, we planned to hold the northern portion of 7 constant,
and survey diversity on the southern benzyl moiety employing a
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Figure 2. Concentration response curves (CRCs) for M;-Ms for HTS hit VU0108370.
M; ECs09 ~13 pM (does not plateau) and M;-Ms ECso >30 pM.
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Figure 3. Initial optimization strategy for VU0108370, 7.
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Scheme 1. Reagents and conditions: (a) (i) indole, I, KI, MeOH, H,0; (ii) 2 M LiOH,
THF (38%); (b) PyClu, DCE, 110 °C, 20 min, mw (71%); (¢) Oxone, MeOH, H,0 (88%);
NaH, DMF, BnX (50-90%).

library synthesis approach. As shown in Scheme 1, the key library
scaffold 12 was readily prepared in three steps from methyl thio-
glycolate 8. A PyClu-mediated microwave-assisted coupling
between 9 and 10 provided 11 in 71% yield, which was then oxi-
dized to the corresponding sulfone 12 with Oxone in 88% yield.
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