ELSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery of molecular switches within the ADX-47273 $mGlu_5$ PAM scaffold that modulate modes of pharmacology to afford potent $mGlu_5$ NAMs, PAMs and partial antagonists

Jeffrey P. Lamb ^{a,c,†}, Darren W. Engers ^{a,c,d,†}, Colleen M. Niswender ^{a,c,d}, Alice L. Rodriguez ^{a,c,d}, Daryl F. Venable ^{a,c}, P. Jeffrey Conn ^{a,c,d}, Craig W. Lindsley ^{a,b,c,d,*}

ARTICLE INFO

Article history: Received 28 October 2010 Revised 23 November 2010 Accepted 29 November 2010 Available online 3 December 2010

Keywords: mGlu5 NAM PAM Allosteric Metabotropic Glutamate

ABSTRACT

This Letter describes a chemical lead optimization campaign directed at a weak mGlu₅ NAM discovered while developing SAR for the mGlu₅ PAM, ADX-47273. An iterative parallel synthesis effort discovered multiple, subtle molecular switches that afford potent mGlu₅ NAMs, mGlu₅ PAMs as well as mGlu₅ partial antagonists.

© 2010 Elsevier Ltd. All rights reserved.

The metabotropic glutamate receptor subtype 5 (mGlu₅) has become a prominent molecular target for a number of CNS pathologies. 1,2 mGlu5 negative allosteric modulators (NAMs) are being actively pursued for anxiety, pain, Parkinson's disease, cocaine addiction and Fragile X Syndrome, while mGlu₅ positive allosteric modulators (PAMs) are under development for the treatment of schizophrenia.^{3–9} The prototypical mGlu₅ allosteric ligand is MPEP (1), 10 a NAM, and many allosteric ligands, both PAM and NAM, bind at the MPEP-site. 1-10 Recently, we reported on the discovery of molecular switches in a series of MPEP-site phenylethynyl pyrimidines in which incorporation of a single methyl group in either the 3- or 4-position converted an mGlu₅ partial antagonist lead 2 $(IC_{50} = 486 \text{ nM}, 71\% \text{ partial})$ into either a NAM **3** $(IC_{50} = 7.5 \text{ nM})$ or PAM **4** (EC₅₀ = 3.3 μ M, 4.2-fold shift), respectively (Fig. 1).¹¹ Further SAR identified additional, subtle molecular switches that afforded centrally penetrant and in vivo active mGlu₅ NAMs and PAMs. 12 After these key findings, we began to take note of pharmacology switches, and identified these in multiple mGlu₅ allosteric modulator scaffolds. 13,14 Interestingly, our initial SAR work in the

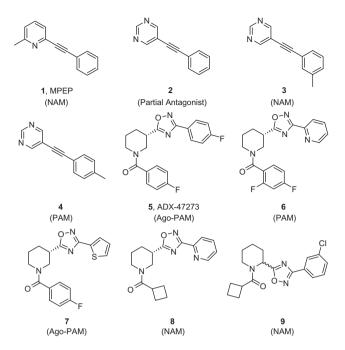
mGlu₅ PAM ADX-47273 **5** series in 2009 produced potent PAMs, such as **6** (EC₅₀ = 240 nM, 14-fold shift), and ago-PAMs such as **7** (EC₅₀ = 170 nM, 20-fold shift), but only one weak NAM **8** (IC₅₀ = 8.7 μ M). ¹⁵ This was the first indication that pharmacology switching is possible in the ADX-47273 series by replacing an aryl amide, as in **6**, with a cyclobutyl amide in **8**. ¹⁵

While we were exploring this finding, a manuscript appeared in 2010 describing the identification of racemic $mGlu_5$ NAM **9**, closely related to our NAM **8**, from an HTS screen, and the parallel synthesis of over 1300 analogs. ¹⁶ However, within this manuscript, there is little discussion of the impact of stereochemistry and *no* mention of pharmacology switching. Here, we present our SAR study, developed though an iterative parallel synthesis approach, that afforded potent $mGlu_5$ PAMs, NAMs and partial antagonists from subtle modifications to the ADX-47273 scaffold.

Our initial library evaluated two dimensions: stereochemistry at the 3-postion and replacement for the 2-pyridyl moiety while holding the cyclobutyl amide constant. In our earlier work in the ADX-47273 series, ¹⁵ the (*S*)-stereochemistry at the 3-position was essential for mGlu₅ PAM activity, and it was important to ascertain the stereochemical bias, if any, to produce NAMs. In the event, (*S*)-10 was converted to the methyl ester 11, followed by acylation to yield 12. Saponification provides 13, which is then

^a Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA

^b Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA


^c Vanderbilt Program in Drug Discovery, Nashville, TN 37232, USA

^d Vanderbilt Specialized Chemistry Center(MLPCN), Nashville, TN 37232, USA

^{*} Corresponding author.

E-mail address: craig.lindsley@vanderbilt.edu (C.W. Lindsley).

 $^{^\}dagger$ These authors contributed equally to this work.

Figure 1. Structures of selected MPEP-site allosteric ligands that display a range of mGlu₅ pharmacology with subtle modifications.

coupled to various (Z)-N-hydroxylimidamides **14** and refluxed to deliver analogs (S)-**15** (Scheme 1). The analogous (R)-**15** congeners were made via the same scheme except (R)-**10** was used.

As shown in Table 1, the stereochemical preference we identified in our earlier PAM work in this series carried over into the NAM pharmacology with the (S)-enantiomer preferred, that is, (S)-15e (IC₅₀ = 0.2 μ M) versus (R)-15e (IC₅₀ = 3.1 μ M). Significantly, 3-substituted aryl congeners (S)-15e-f, proved most enlightening, affording submicromolar mGlu₅ NAMs, with in the case of (S)-15e, an \sim 41-fold increase in potency over **8**. ¹⁵ These data led us to consider if there is stereochemical bias for pharmacological mode of action within the 9 scaffold. Thus we prepared small, enantiopure libraries of analogs (S)-20 and (R)-20, from either (S)-16 and (R)-16, respectively, and evaluated them in our mGlu₅ assays (Scheme 2). As shown in Table 2, this effort found that both enantiomers afford comparable activity and mode of pharmacology. This library provided an efficacious submicromolar PAM (S)-20c (EC₅₀ = 730 nM, 71% Glu Max) as well as several submicromolar NAMs ((S)- and (R)-20e-f) which also afforded a full blockade of the EC_{80} , and in

Scheme 1. Reagents and conditions: (a) SOCl₂, MeOH (99%), cylcobutane carbonyl chloride, DIEA, DCM (96%); (c) LiOH, THF, H_2O (95%); (d) EDCI, HOBt, DIEA, dioxane, reflux, 24 h (45–59%).

Table 1 Structures and activities of analogs (*S*)-**15** and (*R*)-**15**

	(S)- 15		(R)- 15		
Compd	R	Pharmacology	IC ₅₀ ^a (μΜ)	EC ₅₀ ^a (μΜ)	Glu Max ^a (%)
(S)- 15a (R)- 15a	Zy S	NAM Inactive	9.3 -	NA —	67 -
(S)- 15b (R)- 15b	F	Inactive Inactive			
(S)- 15c (R)- 15c	25 N	NAM NAM	>10 9.9	NA NA	33 19
(S)- 15d (R)- 15d	3, F	NAM NAM	2.4 >10	NA NA	31 60
(S)- 15e (R)- 15e	Zy CI	NAM NAM	0.2 3.1	NA NA	2.4 18
(S)- 15f (R)- 15f	'3, CH ₃	NAM NAM	0.7 4.7	NA NA	2.5 14
(S)- 15g (R)- 15g	Zy OCH ₃	NAM NAM	1.8 >10	NA NA	2.1 54

^a Average of at least three independent determinations. NA, not applicable.

Scheme 2. Reagents and conditions: (a) $SOCl_2$, MeOH (99%), cylcobutane carbonyl chloride, DIEA, DCM (95%); (c) LiOH, THF, H_2O (95%); (d) EDCI, HOBt, DIEA, dioxane, reflux, 24 h (40–55%).

the case of (*S*)-**20f**, an 77 nM NAM. Based on these data, our next round of library synthesis employed both the **20e** NAM scaffold and the **20c** PAM scaffold, and focused on evaluating other amide moieties beyond the cyclobutyl amide. These analogs **21** and **22** were readily prepared following a variation of Scheme 2.

The library of **20e** analogs, **21a–i**, afforded both NAMs and partial antagonists, ¹⁷ with no evidence of PAM activity (Table 3). Interestingly, the three and five-membered saturated ring amides **21a** and **21c**, afforded partial antagonists, while the four and six-membered saturated ring amides **21b** and **21d** afforded full non-competitive antagonists (NAMs). In contrast, the library of **20c** analogs, **22a–i**, afforded predominantly PAMs and ago-PAMs. For example, **22a** proved to be a potent (EC₅₀ = 78 nM, 70% Glu Max) mGlu₅ PAM, more potent than the previous PAMs **6** and **7** we

Download English Version:

https://daneshyari.com/en/article/1374347

Download Persian Version:

https://daneshyari.com/article/1374347

<u>Daneshyari.com</u>