

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 2905-2908

2,5-Disubstituted pyrrolidine carboxylates as potent, orally active sphingosine-1-phosphate (S1P) receptor agonists

Vincent J. Colandrea,^{a,*} Irene E. Legiec,^a Pei Huo,^a Lin Yan,^a Jeffrey J. Hale,^a Sander G. Mills,^a James Bergstrom,^b Deborah Card,^b Gary Chebret,^b Richard Hajdu,^b Carol Ann Keohane,^b James A. Milligan,^b Mark J. Rosenbach,^b Gan-Ju Shei^b and Suzanne M. Mandala^b

^aDepartment of Medical Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA ^bDepartment of Immunology and Rheumatology Research, Merck Research Laboratories, Rahway, NJ 07065, USA

> Received 3 February 2006; revised 28 February 2006; accepted 1 March 2006 Available online 31 March 2006

Abstract—A series of 2,5-*cis*-disubstituted pyrrolidines were synthesized and evaluated as S1P receptor agonists. Compounds **15–21** were identified with good selectivity over S1P₃ which lowered circulating lymphocytes after oral administration in mice. © 2006 Published by Elsevier Ltd.

The sphingosine-1-phosphate-1 $(S1P_1)$ receptor has recently emerged as a novel molecular target for immunosuppression.¹ Systemic administration of S1P agonists results in the sequestration of peripheral blood lymphocytes (PBLs) in secondary lymphoid organs, which prevents their access to transplanted or non-lymphoid tissues.² This pharmacodynamic phenomenon is putatively responsible for the immunosuppressive efficacy of this class of compounds.³

Work from these laboratories has shown that the 2,5-disubstituted pyrrolidine (\pm)-1 and diaryl-1,2,4-oxadiazole 2 are potent agonists of S1P receptors.^{4,5} In addition, compound 2 and its analogs were found to have exceptional selectivity against S1P₃, a receptor subtype that mediates acute cardiovascular toxicity in rodents.⁶ Based on these results, we sought to combine the salient features of the oxadiazole-based lipophilic domain of compounds like 2 and the pyrrolidine scaffold in (\pm)-1 with the aim of affording potent, selective, and orally active S1P₁ agonists (Fig. 1).

In order to modify both the 2- and 5-positions of the pyrrolidine scaffold, a flexible synthesis of these disubsti-

0960-894X/\$ - see front matter @ 2006 Published by Elsevier Ltd. doi:10.1016/j.bmcl.2006.03.038

tuted pyrrolidines was designed, starting with (\pm) -pyrrolglutamic acid **3**. Schemes 1–3 illustrate our synthetic approach. Sequential protection of (\pm) -**3** under standard conditions gave the *N*-tert-butoxycarbamoyl methyl ester (\pm) -**4**.⁷ Regioselective addition to the amide carbonyl with 4-cyanophenylmagnesium chloride gave ketone (\pm) -**5**.⁸ Treatment of (\pm) -**5** with trifluoroacetic acid effected ring closure to the corresponding pyrroline, which was subsequently reduced with sodium cyanoborohydride to provide the diastereomeric (\pm) -cis- and (\pm) -trans-pyrrolidines (\pm) -**6a**,**b**. These diastereomers were separated by flash chromatography and assignment of their relative stereochemistries was secured by ID nOe experiments.⁹ Protection of the pyrrolidine nitrogen afforded nitriles (\pm) -**7a**,**b**.

Figure 1.

Keywords: Pyrrolidines; Oxadiazole; S1P receptor; Immunosuppressants.

^{*} Corresponding author. Tel.: +1 732 594 1669; fax: +1 732 594 5966; e-mail: vince_colandrea@merck.com

Scheme 1. Reagents and conditions: (a) Amberlyst-15, CH₃OH, 50 °C; (b) Boc₂O, Et₃N, DMAP (78%, two steps); (c) 4-cyanophenylmagnesium chloride, -40 °C; (d) TFA, CH₂Cl₂; (e) NaBH₃CN, HCl, CH₃OH (**6a**: 38%, **6b**: 24%, three steps); (f) Boc₂O, CH₂Cl₂ (**7a**: 96%, **7b**: 80%).

Scheme 2. Reagents and conditions: (a) NH₂OH, Et₃N, CH₃OH ((\pm)-7a: 93%, (\pm)-7b 73%); (b) EDC, 4-(2-methylpropyl)phenylbenzoic acid, CH₃CN, rt then 120 °C, 15 h; (c) TFA, CH₂Cl₂; (d) NaOH, CH₃OH ((\pm)-9a: 51%, (\pm)-9b: 34%, three steps).

Scheme 3. Reagents and conditions: (a) LiOH, THF/CH₃OH/H₂O; (b) *i*-BuOCOCl, Et₃N, then CH₂N₂; (c) AgOBz, Et₃N, CH₃OH ((\pm)-10a: 52%, (\pm)-10b: 14%, three steps); (d) NH₂OH, Et₃N, CH₃OH; (e) EDC, 4-(2-methylpropyl)-phenylbenzoic acid, CH₃CN, rt then 120 °C, 15 h; (f) TFA, CH₂Cl₂; (g) NaOH, CH₃OH ((\pm)-11a: 45%, (\pm)-11b: 36%, four steps).

Nitriles (\pm)-7a,b were valuable intermediates for the synthesis of the pyrrolidine carboxylate homologs (\pm)-9a, 9b, 11a, 11b, 14a, and 14b (Schemes 2–4). Preparation of the α -amino acids (\pm)-9a and (\pm)-9b is outlined in Scheme 2. Independent treatment of nitriles (\pm)-7a and

Scheme 4. Reagents and conditions: (a) LiBH₄, THF; (b) (COC1)₂, DMSO, then Et₃N, -78 °C to rt; (c) ethyl(triphenylphosphoranylidine) acetate, PhCH₃; (d) H₂, 10% Pd–C, CH₃OH; (e) NH₂OH, Et₃N, CH₃OH ((±)-7a: 11%, (±)-7b 16%, four steps); (f) EDC, 4-(2-methylpropyl)-phenylbenzoic acid, CH₃CN, rt then 120 °C, 15 h; (g) TFA, CH₂Cl₂; (h) NaOH, CH₃OH ((±)-14a: 68%, (±)-14: 22%, three steps).

(\pm)-7b with hydroxylamine gave the amidoximes (\pm)-8a and (\pm)-8b. These intermediates were *O*-acylated and thermally cyclized and dehydrated to afford the corresponding 1,2,4-oxadiazoles. Deprotection of the *N*-tert-butoxycarbamate and methyl ester moieties afforded compounds (\pm)-9a and (\pm)-9b.

The homologation of nitriles (\pm) -7**a** and (\pm) -7**b** was accomplished through an Arndt-Eistert sequence¹⁰ to give esters (\pm) -10**a** and (\pm) -10**b** (Scheme 3). Installation of the oxadiazole and deprotection vide infra furnished the desired β -amino acids (\pm) -11**a** and (\pm) -11**b**.

Preparation of the γ -amino acids (±)-14a and (±)-14b is outlined in Scheme 4. Selective reduction of the esters of (±)-7a and (±)-7b with lithium borohydride¹¹ gave the corresponding alcohols, which were oxidized using the Swern protocol¹² to furnish aldehydes (±)-12a and (±)-12b. Reaction with ethyl(triphenylphosphoranylidine) acetate, followed by hydrogenation and reaction with hydroxylamine, gave amidoximes (±)-13a and (±)-13b. Once again, oxadiazole formation followed by sequential deprotection afforded compounds (±)-14a and (±)-14b.

Binding affinities for new compounds were evaluated for each of the five known sphingosine-1-phosphate receptors (S1P₁₋₅) in radioligand competitive binding assays using [³³P]S1P expressed in Chinese hamster ovary (CHO) cell membranes.¹ S1P receptor agonism was determined by measurement of ligand-induced [³⁵S]-5'-*O*-3-thiotriphosphate (GTP γ S) binding. All new compounds were found to be agonists of the SIP_{1,3,5} receptors and to have minimal affinity for the S1P₂ receptor subtype. Values for binding (IC₅₀) and functional (EC₅₀) assays were in agreement to a factor of 4, thus only IC₅₀ values for S1P_{1,3-5} receptors will be displayed for new compounds (see Tables 1 and 2). The ability of selected compounds to lower circulating PBLs Download English Version:

https://daneshyari.com/en/article/1374385

Download Persian Version:

https://daneshyari.com/article/1374385

Daneshyari.com