

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery and SAR of novel pyrazole-based thioethers as cathepsin S inhibitors: Part 1

Alice Lee-Dutra ^{a,*}, Danielle K. Wiener ^a, Kristen L. Arienti ^a, Jing Liu ^a, Neelakandha Mani ^a, Michael K. Ameriks ^a, Frank U. Axe ^{a,†}, Damara Gebauer ^{a,‡}, Pragnya J. Desai ^a, Steven Nguyen ^a, Mike Randal ^{b,§}, Robin L. Thurmond ^a, Siquan Sun ^a, Lars Karlsson ^a, James P. Edwards ^a, Todd K. Jones ^a, Cheryl A. Grice ^a

ARTICLE INFO

Article history: Received 30 October 2009 Revised 15 January 2010 Accepted 20 January 2010 Available online 28 January 2010

Keywords: Cathepsin Protease Thioether

ABSTRACT

A series of pyrazole-based thioethers were prepared and found to be potent cathepsin S inhibitors. A crystal structure of **13** suggests that the thioether moiety may bind to the S3 pocket of the enzyme. Additional optimization led to the discovery of aminoethylthioethers with improved enzymatic activity and submicromolar cellular potency.

© 2010 Elsevier Ltd. All rights reserved.

Cathepsin S (CatS) is a cysteine protease of the papain family that is involved in the presentation of antigens to the cell surface of certain antigen-presenting cells (APCs) for recognition by CD4⁺ T-cells. The main target of the proteolytic activity of CatS is the invariant chain (Ii), a chaperone molecule for major histocompatibility complex class II molecules (MHC II).¹ Inhibition of CatS activity slows the removal of Ii and attenuates antigen presentation to CD4⁺ T-cells, resulting in immunosuppression with specificity for these T-cells.

We have previously reported our efforts to identify novel non-covalent inhibitors of CatS based on a tetrahydropyrido-pyrazole heterocycle (Fig. 1). Much of this work focused on the SAR of substituent variations of the 'headgroup' as well as the P4 group, as exemplified by compounds **1** and **2**. More recently, we became interested in exploring substitution that would access S1 binding, ultimately discovering novel arylalkynes, such as compound **3**, that bind to this region of the enzyme. Concurrent efforts to explore alternative binding elements led to the preparation of analogs containing aryl thioethers as a replacement for these arylalkynes.

Preliminary investigation of such thioethers was conducted using aryl iodide intermediates **4** and **5**, which were synthesized as previously reported.^{2f} Metal-mediated coupling with commercially available thiols afforded the desired thioether products (Scheme 1)³

As seen in Table 1, these initial compounds exhibited promising activity. Compounds **6** and **7** share similarly moderate enzymatic activity, indicating that the elongation of the methylene tether is not detrimental to activity. Replacement of the phenyl group with a methyl group (**8**) appears to decrease activity, whereas the incorporation of a phenyl ether (**9**) leads to submicromolar inhibition. Exchanging the *para*-chloro moiety with a trifluoromethyl group maintains activity (**9** vs **10**). However, substituting the morpholine headgroup with 1-piperidin-4-yl-pyrrolidin-2-one led to threefold improved activity for compound **11**.

Re-design of the synthesis route enabled more facile access to thioether variations through aromatic substitution rather than palladium-mediated coupling (Scheme 2). In this instance, initial reaction with mercaptoethanol was followed by alkylation with 2-(2-bromoethyl)-1,3-dioxolane. Unmasking the aldehyde under acidic conditions and subsequent reductive amination provided hydroxyethylthioether 12, which was found to be equipotent to ether analog 11.

A crystal structure was obtained for a close analog of alcohol **12** (compound **13**, Fig. 2). Notably, the hydroxyethylthioether of **13** points toward the S3 region of the active site rather than toward

^a Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA

^b Sunesis Pharmaceuticals, 341 Oyster Point Boulevard, South San Francsico, CA 94080, USA

^{*} Corresponding author. Tel.: +1 858 320 3317; fax: +1 858 450 2089. E-mail address: alee7@its.jnj.com (A. Lee-Dutra).

 $^{^{\}dagger}$ Present address: Axe Consulting Services, 14595 Surrey Junction Lane, Sutter Creek, CA 95685, USA.

 $^{\ ^{\}ddagger}$ Present address: Cambridge Research & Instrumentation, Inc., 35B Cabot Road, Woburn, MA 01801, USA.

[§] Retired.

Figure 1. Previous CatS inhibitors with tetrahydropyrido-pyrazole core.

Scheme 1. Reagents and conditions: (a) HSR^1 , $Pd_2(dba)_3$, dppf, Et_3N , DMF or NMP, 70-80 °C (36–95%). For $HSCH_2CH_2OH$: Cul, neocuproine, NaOt-Bu, toluene, 110 °C (43%). R^1 is defined in Table 1.

Table 1 Effect of thioether substitution on cathepsin S activity^a

Compd	Amine	R	R^1	CatS IC_{50} (μM)
6	Morpholine	Cl	CH ₂ Ph	1.65
7	Morpholine	Cl	CH ₂ CH ₂ Ph	1.47
8	Morpholine	Cl	CH ₂ CH ₂ CH ₃	3.60
9	Morpholine	Cl	CH ₂ CH ₂ OPh	0.60
10	Morpholine	CF ₃	CH ₂ CH ₂ OPh	0.74
11	$\bigcup_{N-}^{O} N - \bigcup_{N-}^{d}$	CF ₃	CH ₂ CH ₂ OPh	0.22
12	\bigcup_{N-N-}^{O}	CF ₃	CH ₂ CH ₂ OH	0.20
13	Morpholine	Cl	CH ₂ CH ₂ OH	0.96

^a CatS IC₅₀ values are the mean of $n \ge 2$ runs and determined as described previously.^{2b}

Scheme 2. Reagents and conditions: (a) $HSCH_2CH_2OH$, K_2CO_3 , DMF, 90 °C (75–89%); (b) 2-(2-bromoethyl)-1,3-dioxolane, Cs_2CO_3 , DMF (95%); (c) (i) 1 N HCl (aq), acetone, 55 °C; (ii) HNR^3R^4 , acetic acid, $NaBH(OAc)_3$, CH_2Cl_2 (6–51%, two steps); (d) (i) CH_3SO_2Cl , Et_3N , CH_2Cl_2 ; (ii) HNR^5R^6 , EtOH/DCE, EtOH/DCE,

Download English Version:

https://daneshyari.com/en/article/1374593

Download Persian Version:

https://daneshyari.com/article/1374593

Daneshyari.com