Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Biaryl substituted hydantoin compounds as TACE inhibitors

Wensheng Yu^{a,*}, Ling Tong^a, Seong Heon Kim^a, Michael K. C. Wong^a, Lei Chen^a, De-Yi Yang^a, Bandarpalle B. Shankar^a, Brian J. Lavey^a, Guowei Zhou^a, Aneta Kosinski^a, Razia Rizvi^a, Dansu Li^b, Robert J. Feltz^a, John J. Piwinski^b, Kristin E. Rosner^b, Neng-Yang Shih^b, M. Arshad Siddiqui^b, Zhuyan Guo^c, Peter Orth^c, Himanshu Shah^d, Jing Sun^d, Shelby Umland^d, Daniel J. Lundell^d, Xiaoda Niu^d, Joseph A. Kozlowski^a

^a Department of Medicinal Chemistry, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, United States

^b Department of Medicinal Chemistry, Merck Research Laboratories, 320 Bent Street, Cambridge, MA 02141, United States

^c Department of Drug Design, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, United States

^d Department of Bone, Respiratory, Immunology, and Dermatology, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, United States

ARTICLE INFO

Article history: Received 18 March 2010 Revised 23 June 2010 Accepted 28 June 2010 Available online 01 July 2010

Keywords: TACE TNF-a convertase TACE inhibitor Hydantoin Hydantoin zinc ligand Anti-TNF Rheumatoid arthritis

$A \hspace{0.1in} B \hspace{0.1in} S \hspace{0.1in} T \hspace{0.1in} R \hspace{0.1in} A \hspace{0.1in} C \hspace{0.1in} T$

We disclose further optimization of hydantoin TNF- α convertase enzyme (TACE) inhibitors. SAR with respect to the non-prime region of TACE active site was explored. A series of biaryl substituted hydantoin compounds was shown to have sub-nanomolar K_i , good rat PK, and good selectivity versus MMP-1, -2, -3, -7, -9, and -13.

© 2010 Published by Elsevier Ltd.

Tumor necrosis factor- α (TNF- α) is a key cytokine in innate immune response. Overproduction of TNF- α mediates a variety of autoimmune diseases including rheumatoid arthritis, psoriasis, and Crohn's disease.¹ The reduction of circulating TNF- α levels by biologic drugs, such as Enbrel[®] and Remicade[®], is a successful treatment for several inflammatory diseases. As a result, discovery of a cost-effective, orally active small molecule drug that could modulate TNF- α levels is of high interest.

An approach amenable to small molecule discovery is the regulation of TNF- α levels via the inhibition of TNF- α converting enzyme (TACE). TACE converts the 26-kDa transmembrane bound pro-TNF- α to the mature 17-kDa soluble form of TNF.^{2,3} TACE inhibitors are generally classified as hydroxamates⁴ or nonhydroxamates.⁵ Our program has been focused on the nonhydroxamate class of TACE inhibitors. We recently disclosed a series of tartaric acid based TACE inhibitors⁶ and a series of hydantoin-based TACE inhibitors (Fig. 1).⁷ Herein we report further optimization of the hydantoin TACE inhibitors by the introduction

Corresponding author.
E-mail address: wensheng.yu@merck.com (W. Yu).

0960-894X/\$ - see front matter \odot 2010 Published by Elsevier Ltd. doi:10.1016/j.bmcl.2010.06.134

of biaryl groups to occupy the non-prime region of the TACE active site.

The X-ray structure of **1** suggests that the non-prime region of the protein is pretty open and could tolerate other substitutions (Fig. 2). To explore this idea, a set of compounds with additional substitution on the phenyl group was prepared as described in Scheme 1. Compound **3** was converted to the desired amine **4** through sequential Boc protection, hydantoin formation, and Boc deprotection. Compound **7** was prepared from **5** by sequential methylation and bromination. Alkylation of amine **4** with benzyl

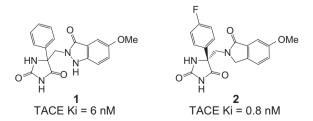


Figure 1. Hydantoin-based TACE inhibitors 1 and 2.

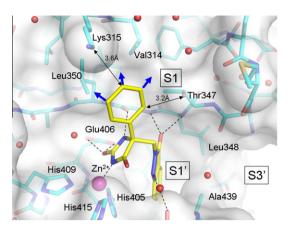
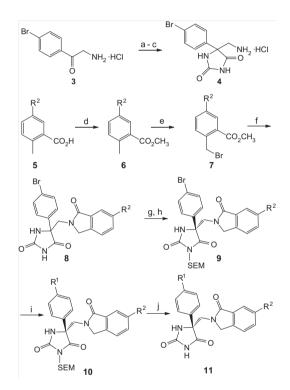
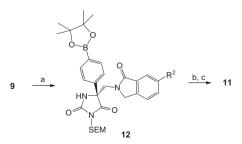
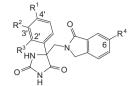




Figure 2. X-ray structure of 1 (3LE9) bound to the active site of TACE.


Scheme 1. Reagents and conditions: (a) (Boc)₂O, DCM, Et₃N, rt, 16 h, 100%; (b) KCN, (NH₄)₂CO₃, EtOH/H₂O (1:1), 70 °C, 24 h, 86%; (c) HCl, MeOH, 16 h, 90%; (d) MeI, Cs₂CO₃, DMF, rt, 16 h, 99%; (e) NBS, benzoyl peroxide, CCl₄, 80 °C, 4 h, 99%; (f) **4**, DIPEA, DMF, rt, 16 h, 68%; (g) SEMCI, DIPEA, DMF, rt, 5 h, 85%; (h) HPLC separation; (i) R¹B(OH)₂, Pd(dppf)₂Cl₂·CH₂Cl₂, K₂CO₃, CH₃CN, H₂O, 50–90%, or R¹OH, Cul, Cs₂CO₃, 2,2,6,6-tetramethyl-3,5-heptanedione, NMP, 140 °C, 15 h, 20–80%; or pyrrolidin-2-one, Pd(dba)₂, Xantphos, Cs₂CO₃, dioxane, 100 °C, 16 h, 70%; (j) HCl, MeOH, 90 °C, 16 h, then TEA, 46–80%.

Scheme 2. Reagents and conditions: (a) Bis(pinacolato)diboron, $Pd(dppf)_2Cl_2$ · CH₂Cl₂, KOAc, dioxane, 125 °C, 2 h; (b) RBr or RI, $Pd(dppf)_2Cl_2$ ·CH₂Cl₂, K₂CO₃, CH₃CN, H₂O; (c) HCl, MeOH, 90 °C, 16 h, then TEA.

Table 1

TACE K_i of hydantoin TACE inhibitors

Compd	R ¹	R ²	R ³	R ⁴	TACE K _i ^a (nM)
(R)- 13	ntr.	н	Н	OMe	3
(R)- 14	O N	Н	Н	OMe	7
(R)- 15		Н	Н	OMe	8
(R)- 16	N N	Н	Н	OMe	6
(R)- 17	N N N	Н	Н	F	8
(R)- 18	0 N	Н	Н	OMe	6
(±)- 19 (±)- 20	H H	H OPh	OPh H	F F	29 27

 $^{\rm a}$ The compounds were tested for their inhibition of the cleavage of a pro-TNF- α peptide catalyzed by TACE. $^{\rm 9}$

bromide **7** gave **8** in moderate yield. Compound **8** was protected as a SEM ether and the enantiomers were separated by HPLC on a Chiralpak AD column.⁸ The desired (R)-enantiomer **9** was coupled with R¹B(OH)₂, R¹OH, amines, or amides under various coupling conditions to give **10** in moderate to good yield. The SEM group was deprotected by sequential treatment with HCl in MeOH, then triethylamine to give **11** in moderate yield.

An alternative way to prepare **11** is shown in Scheme 2. Compound **9** was converted to boronate **12** via Pd-catalyzed reaction with bis(pinacolato)diboron. Compound **11** was obtained via various coupling reactions of **12** with R¹Br or R¹I followed by deprotection of the SEM group.

The TACE activities of some compounds prepared following Scheme 1 or Scheme 2 are shown in Table 1. The 4'-cyclopentoxy analog **13** showed single-digit nanomolar activity. Replacement of cyclopentyl by pyridyl **14** retained the activity. When a large group such as isoquinolin-6-yloxy **15** was incorporated, TACE activity was maintained relative to **14**. N-linked substitution, such as found in the 4'-morpholinyl analog **16** and the γ -lactam **17**, was also tolerated. Likewise, the carbonyl-linked tertiary amide **18** possessed similar activity. These results suggest that a wide variety of substituents differing in size and linker atom is permissible at C4'. By contrast, two analogs bearing phenoxy substitution at either C2' (**19**) or C3' (**20**) showed slightly reduced activity relative to the preceding compounds.

Thus it seems that C4' substitutions can offer potent TACE inhibitors. Examination of the X-ray structure of **1** suggested that the substituent at the C4' position may interact with the methylene chain of Lys315. To further test this hypothesis, more C4'-substituted analogs with linear biaryl groups were prepared (Table 2). The linear arrangement of the biaryl groups can maximize the

Download English Version:

https://daneshyari.com/en/article/1374671

Download Persian Version:

https://daneshyari.com/article/1374671

Daneshyari.com