Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and cytotoxic activities of 1-benzylidine substituted β-carboline derivatives

Rihui Cao ^{a,*}, Wei Yi ^a, Qifeng Wu ^b, Xiangdong Guan ^b, Manxiu Feng ^b, Chunming Ma ^a, Zhiyong Chen ^a, Huacan Song ^a, Wenlie Peng ^{b,*}

^a School of Chemistry and Chemical Engineering, Sun Yat-sen (Zhongshan) University, 135 Xin Gang Xi Road, Guangzhou 510275, PR China
^b School of Life Sciences, Sun Yat-sen (Zhongshan) University, 135 Xin Gang Xi Road, Guangzhou 510275, PR China

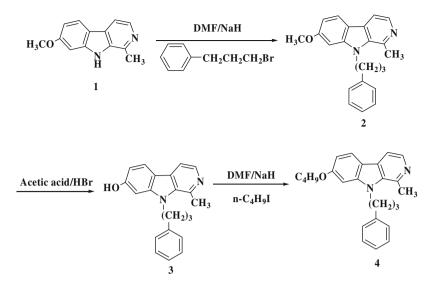
ARTICLE INFO

Article history: Received 20 May 2008 Revised 21 September 2008 Accepted 10 October 2008 Available online 14 October 2008

Keywords: Harmine β-Carbolines Cytotoxic activities Structure-activity relationships

ABSTRACT

A series of new β -carboline derivatives, bearing a benzylidine substituent at position-1, has been prepared and evaluated in vitro against a panel of human cell lines. The N^2 -benzylated β -carbolinium bromates represented the most interesting cytotoxic activities. In particular, compounds **19** were found to be the most potent compounds with IC₅₀ values lower than 5 μ M against 10 strains human tumor cell lines. These results confirmed that the N^2 -benzyl substituent on the β -carboline ring played an important role in the modulation of the cytotoxic activities and suggested that further development of such compounds may be interest.


© 2008 Elsevier Ltd. All rights reserved.

The β-carboline core is common to many natural and synthetic products associated with a broad spectrum of biochemical effects and pharmaceutical properties.¹ Previously, numerous investigations focused on the effects of β -carboline alkaloids on the central nervous system (CNS), such as their affinity with benzodiazepine (BZ),² 5-hydroxytryptamine (5-HT),³ dopamine (DA),⁴ and imidazoline⁵ receptors. However, considerable recent interests in these alkaloids were stimulated by their potential antitumor activities. Ishida et al.⁶ reported that harmine (Fig. 1), which naturally occurs in the medicinal plants of Peganum harmala and Eurycoma longifo*lia*, and β-carboline analogues exhibited significant antitumor activities in vitro and α -(4-nitrobenzylidine)-harmine (Fig. 1) was found to be the most active compound with a broad cytotoxicity spectrum. β-Carbolines bearing a flexible alkylamine side chain at position-3 demonstrated potent DNA intercalating abilities resulting in remarkable antitumor activities.⁷ The complex polycyclic ring system in manzamine A can be replaced with simpler amino substituents to provide active compounds.⁸ In addition, βcarboline amino acid ester conjugates displayed potent cytotoxic activities and the Lys/Arg conjugates demonstrated the most significant antitumor activities in vitro.⁹ Our previous reports described the syntheses of numerous β-carboline derivatives bearing various substituents at position-1, 2, 3 and 9 of β-carboline nucleus and evaluated their antitumor activities in vitro¹⁰⁻¹³ and in vivo.^{10,12} The structure–activity relationships (SARs) analysis provided evidence that (1) the molecular feature essential for the antitumor activity was the β -carboline moiety; (2) the introduction of appropriate substituents into position-1, 2, 3 and 9 of β -carboline ring remarkably enhanced the antitumor activities; (3) the methoxy group at position-7 of β -carboline nucleus played a very crucial role in determining their remarkable neurotoxic effects.¹ Taking advantage of previously developed SARs of β -carbolines as potential antitumor agents, in the present investigation we have designed and synthesized a number of new β -carboline derivatives bearing various 4-substituted benzylidine at position-1. The purpose of this study was to investigate effect of benzylidine substituent on the antitumor agents, together with lower side effects.

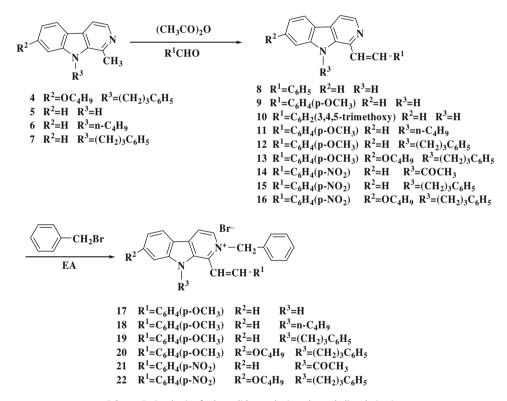


Figure 1. Chemical structure of harmine and α -(4-nitrobenzylidine)-harmine.

^{*} Corresponding authors. Tel.: +86 20 84110918; fax: +86 20 84112245. *E-mail addresses:* caorihui@mail.sysu.edu.cn (R. Cao), pengwl@mail.sysu.edu.cn (W. Peng).

Scheme 1. Synthesis of 7-methoxy-9-(3-phenylpropyl)-1-methyl- β -carboline.

Scheme 2. Synthesis of 1-benzylidene substituted β-carboline derivatives.

The synthesis of β -carbolines **2** and **5–7** has been described in our previous reports.^{10,12} Compound **2** was demethylated in acetic acid and hydrobomic acid (1:2) to afford the expected product **3** (yield 80%). O^7 -Butylated β -carboline **4** was prepared from compound **3** by the action of sodium hydride in dry DMF followed by addition of *n*-butyl iodide (Scheme 1).

Compounds **8–22** were prepared as shown in Scheme 2. 1-Benzylidine substituted β -carbolines **8–10**¹⁴ were readily prepared by reaction of 1-methyl- β -carboline **5** with the corresponding aromatic aldehyde in refluxing acetic anhydride. The same synthetic procedure was used for the preparation of compounds **11–16**.¹⁴ Unexpectedly, the reaction of 1-methyl- β -carboline **5** with 4-nitrobenzaldehyde in refluxing acetic anhydride gave N⁹-acetylated β - carboline **14**. The N^2 -benzylated β -carbolinium bromate derivatives **17–22**¹⁵ were prepared from compounds **9**, **11–14**, and **16** by the addition of benzyl bromide in refluxing ethyl acetate. However, the same synthetic procedure was used for the preparation of N^2 -benzylated **15** but failed to afford the expected β -carbolinium bromate.

The cytotoxic potential of all newly synthesized β-carboline derivatives was evaluated in vitro against a panel of human tumor cell lines according to procedures described in our previous reports.¹⁰ The tumor cell line panel consisted of cervical carcinoma (HeLa), liver carcinoma (Bel-7402 and HepG2), gastric carcinoma (BGC-823), non-small cell lung carcinoma (A549), malignant melanoma (A375), renal carcinoma (786-0 and 769-P), colon carcinoma

Download English Version:

https://daneshyari.com/en/article/1374808

Download Persian Version:

https://daneshyari.com/article/1374808

Daneshyari.com