FLSEVIER

Contents lists available at ScienceDirect

## **Bioorganic & Medicinal Chemistry Letters**

journal homepage: www.elsevier.com/locate/bmcl



# Histamine $H_3$ and $H_4$ receptor affinity of branched 3-(1*H*-imidazol-4-yl)propyl *N*-alkylcarbamates

Dorota Łażewska <sup>a</sup>, Małgorzata Więcek <sup>a</sup>, Xavier Ligneau <sup>b</sup>, Tim Kottke <sup>c</sup>, Lilia Weizel <sup>c</sup>, Roland Seifert <sup>d</sup>, Walter Schunack <sup>e</sup>, Holger Stark <sup>c</sup>, Katarzyna Kieć-Kononowicz <sup>a</sup>,\*

- <sup>a</sup> Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
- <sup>b</sup> Bioprojet-Biotech, 4 rue du Chesnay Beauregard, BP 96205, 35762 Saint-Grégoire, France
- c Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
- <sup>d</sup> Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- <sup>e</sup> Institute of Pharmacy, Free University of Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany

### ARTICLE INFO

# Article history: Received 23 June 2009 Revised 30 September 2009 Accepted 1 October 2009 Available online 6 October 2009

Keywords: Histamine H<sub>3</sub> receptor Histamine H<sub>4</sub> receptor Imidazole derivatives

### ABSTRACT

A series of imidazole-containing (non-)chiral carbamates were tested at human histamine  $H_3$  receptor ( $H_3R$ ). All compounds displayed  $K_i$  values below 100 nM. A trend for a stereoselectivity at human  $H_3R$  was observed for the chiral  $\alpha$ -branched ligands. Selected compounds were also tested at human histamine  $H_4$  receptor and showed moderate to weak affinities (118–1460 nM).

© 2009 Elsevier Ltd. All rights reserved.

Imidazole moiety is present in many biologically active compounds (for review see<sup>1</sup>). One of the most important of them is histamine. Histamine exerts tremendous influence over a variety of physiological processes by the four known receptors subtypes: H<sub>1</sub>, H<sub>2</sub>, H<sub>3</sub> and H<sub>4</sub>.

Histamine H<sub>3</sub> receptors (H<sub>3</sub>Rs) are widely expressed in CNS and play the main role in many important processes. Nowadays, the current interest in the area of H<sub>3</sub>R ligands (inverse agonists, antagonists) is focused on non-imidazole compounds (for review see<sup>2-7</sup>), whereas the first generation H<sub>3</sub>R active structures contained the imidazole moiety (for review see<sup>8</sup>). These compounds were analogues of histamine with the 4-substituted imidazole ring. However, despite their high potency and clinical studies none of them have entered the market as a drug. The main drawback of these compounds was inhibition of numerous CYP450 enzymes<sup>9,10</sup> (although recently some studies suggested the possibilities to minimize these activities<sup>11</sup>), reduced oral bioavailability and poor brain penetration (e.g., thioperamide<sup>12</sup>). Actually, imidazole-based ligands like thioperamide, clobenpropit, and ciproxifan (Fig. 1) are mainly used as reference structures in a variety of preclinical animal models.

Despite that imidazole-containing ligands are further the subject of investigations and quite recently, Jablonowski et al. de-

scribed a series of N-methylimidazole-containing compounds—potent  $H_3R$  ligands with improved metabolic stability. (e.g., 1, Fig. 2)<sup>13</sup>

Histamine  $H_4$  receptors ( $H_4Rs$ ) are preferentially expressed on hematopoietic and immune cells (e.g., eosinophils, mast cells, macrophages) and play a role in immunological and inflammatory processes.<sup>14</sup>

The human  $H_4R$  is closely related to the human  $H_3R$ . These two proteins have a sequence identity of 31% and their homology in the transmembrane region is 54%. <sup>15</sup>

Therefore, it is not surprising, that numerous imidazole-containing  $H_3R$  ligands have also significant affinity for the human  $H_4R$  (e.g., Table 1)<sup>16</sup> and some of them (e.g., thioperamide, cloben-propit) have been used to characterize the  $H_4R$ . While the current medicinal chemistry efforts are concerned at finding more selective compounds, AstraZeneca continues to develop imidazole derivatives acting as dual  $H_3R$  and  $H_4R$  ligands (e.g., Fig. 3).<sup>17</sup> These compounds are considered as potential drugs for the treatment of histamine  $H_4$  mediated diseases especially asthma. Also, very recently, Igel et al. described  $N^G$ -alkanoyl-imidazolylpropylguanidines as high-affinity human  $H_3R$  antagonists/partial agonists and full  $H_4R$  agonists.<sup>18</sup> For example, UR-PI294 with  $N^G$ -propionyl group, was tritiated, resulting the radioligand [ $^3H$ ]UR-PI294. $^9$  This radioligand is considered a valuable pharmacological tool for the determination of human  $H_3R$  and human  $H_4R$  affinities.

In this Letter, we describe human  $H_3R$  affinity of branched 3-(1H-imidazol-4-yl)-propyl N-alkylcarbamates (Scheme 1). Most

<sup>\*</sup> Corresponding author. Tel.: +48 12 620 55 81; fax: +48 12 620 55 96. E-mail address: mfkonono@cyf-kr.edu.pl (K. Kieć-Kononowicz).

Figure 1. Some reference imidazole-containing histamine H<sub>3</sub> receptor ligands.

H  $_3$ R: human K  $_i$  = 3 nM rat pA $_2$  = 8.0 human pA $_2$  = 9.2

 $IC_{50}$ s > 10 mM for CYP: 1A2, 2C9, 2C19, 2D6 and 3A4

**Figure 3.** Structure of one of the compounds developed by AstraZeneca. <sup>17</sup>

**Figure 2.** Structure and potency profile of 
$$1.13$$

Table 1 Affinities of compounds 2-22 at human histamine  $H_3$  and  $H_4$  receptor

| Compds | R        | $K_i^a$ (nM)    | $hH_3R$ $K_i^b$ (nM) | hH₄R<br>K₁ <sup>c</sup> (nM) | Selectivity ratio<br>hH <sub>4</sub> R/hH <sub>3</sub> R |
|--------|----------|-----------------|----------------------|------------------------------|----------------------------------------------------------|
| 2      | R,S      | 20 ± 5          | 49                   | nt <sup>d</sup>              |                                                          |
| 3      | R        | 19 ± 5          | 12                   | 290 ± 98                     | 24                                                       |
| 4      | S        | 23 ± 5          | 31                   | nt <sup>d</sup>              |                                                          |
| 5      | R,S      | 25 ± 4          | 21                   | nt <sup>d</sup>              |                                                          |
| 6      | R        | 12±2            | 15                   | nt <sup>d</sup>              |                                                          |
| 7      | S        | 18 ± 4          | $4.7 \pm 0.9$        | 118 ± 38                     | 25                                                       |
| 8      | R,S      | 8.7 ± 2.9       | 29                   | 695 ± 51                     | 24                                                       |
| 9      | $R \sim$ | 19 ± 4          | 19                   | 426 ± 147                    | 22                                                       |
| 10     | S        | 12±5            | 42                   | nt <sup>d</sup>              |                                                          |
| 11     | R,S      | 15 ± 5          | 8.3                  | 162 ± 34                     | 20                                                       |
| 12     | R,S      | 5.1 ± 1.9       | 13                   | 123 ± 17                     | 9                                                        |
| 13     | ~~       | nt <sup>d</sup> | 13                   | nt <sup>d</sup>              |                                                          |
| 14     | R,S      | nt <sup>d</sup> | 30                   | nt <sup>d</sup>              |                                                          |
|        |          |                 |                      |                              | (                                                        |

### Download English Version:

## https://daneshyari.com/en/article/1374889

Download Persian Version:

https://daneshyari.com/article/1374889

**Daneshyari.com**