Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/bmcl

Conformationally-restricted amino acid analogues bearing a distal sulfonic acid show selective inhibition of system x_c^- over the vesicular glutamate transporter

Jean-Louis G. Etoga^a, S. Kaleem Ahmed^b, Sarjubhai Patel^b, Richard J. Bridges^b, Charles M. Thompson^{b,c,*}

^a Department of Chemistry and Biochemistry, The University of Montana, Missoula, MT 59812, USA ^b COBRE Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, USA ^c ATERIS Technologies LLC, 901 N Orange Street, Missoula, MT 59802, USA

ARTICLE INFO

Article history: Received 1 September 2009 Revised 5 October 2009 Accepted 5 October 2009 Available online 12 October 2009

Keywords: Glutamate Amino acid analog Inhibitor VGLUT System x_c⁻ Sulfonic acid

ABSTRACT

A panel of amino acid analogs and conformationally-restricted amino acids bearing a sulfonic acid were synthesized and tested for their ability to preferentially inhibit the obligate cysteine–glutamate transporter system x_c^- versus the vesicular glutamate transporter (VGLUT). Several promising candidate molecules were identified: *R/S*-4-[4'-carboxyphenyl]-phenylglycine, a biphenyl substituted analog of 4-carboxyphenylglycine and 2-thiopheneglycine-5-sulfonic acid both of which reduced glutamate uptake at system x_c^- by 70–75% while having modest to no effect on glutamate uptake at VGLUT.

© 2009 Elsevier Ltd. All rights reserved.

L-Glutamate (**1**) is a key neurotransmitter responsible for the vast majority of the fast excitatory synaptic communication in the mammalian CNS. L-Glutamate acts at ionotropic glutamate receptors to mediate ligand gated ion channels and at metabotropic glutamate receptors to couple intracellular second messenger systems via G-proteins.^{1–5} The importance of L-glutamate as a contributor to higher order processing required in development, plasticity, learning, and memory is well established.^{4,6,7} However, glutamatergic excitotoxicity can result when an excess of L-glutamate occurs and continually activates glutamate receptors.^{2,5,8} To maintain the proper titer of L-glutamate there is a network of strategically positioned transporters that shuttle L-glutamate in and out of cells and organelles. Most notable among these transporters are the excitatory amino acid transporters (EAATs) that facilitate the uptake of L-glutamate into neurons.⁸

In addition to EAATs, other transporters maintain intra- and extra-cellular levels of glutamate including; system x_c^- , a chloride-dependent, sodium-independent obligate exchanger that couples the export of intracellular L-glutamate with the import of extra-cellular L-cystine⁹⁻¹² and the vesicular glutamate transporter (VGLUT) that mediates the uptake of intracellular glutamate into synaptic vesicles.^{6,13,14}

* Corresponding author. Tel.: +1 406 243 4643.

System x⁻ and VGLUT are structurally and functionally distinct from the EAATs and also from each other. Although system x_c and VGLUT differ pharmacologically,^{5,8,15,16} both transporters remove L-glutamate from the cytosol. In principle, therefore, intracellular L-glutamate levels could be regulated by modulating one or both of these transporters.¹⁶ As such, the development of inhibitors that selectively block system x_c and/or VGLUT represents an interesting pharmacologic challenge. Some inhibitors^{9,16,17} have been reported for system x_c^- and for VGLUT^{6,15,18-26} (Fig. 1). Two interesting features common to several system x_c^- and VGLUT inhibitors are the use of aromatic rings to conformationally lock²⁷ the acid groups (e.g., CPG) and sulfonic acid isosteres^{24,25,28} in place of a carboxylic acid. Seeing these as opportunities to explore similarities and differences in the specificities of system x_c^- and VGLUT, we prepared a number of conformationally-restricted glutamate analogs bearing a sulfonic acid group in place of the distal (γ) carboxylic acid of glutamate.

The target compounds were synthesized as shown in Schemes 1 and 2. Simple amino acid analogs (**3a–e**) of phenylglycine were synthesized via hydrolysis of the corresponding hydantoin intermediates (**2a–e**).^{29–32} The preparation of sulfonic acid analogs **5a–i** was carried out by reaction of commercially available amino acids with fuming sulfuric acid to afford monosulfonic acid analogs.³³ To explore the relative contribution of the amino acid center to inhibition two additional targets, compounds **7a–b**, were

E-mail address: charles.thompson@umontana.edu (C.M. Thompson).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2009.10.020

Figure 1. Structures of glutamate, VGLUT and system x_c^- inhibitors and their corresponding IC_{50} values.

Scheme 1. Synthesis of amino acid analogs **3a–f**. Reagents and conditions: (i) $(NH_4)_2CO_3$, KCN, 1:1 MeOH, H₂O, 50–60 °C, 3 h; (ii) Ba(CO₃)₂, H₂O, 100 °C, 72 h.

Scheme 2. Preparation of thiophene analogs 7a/7b.

synthesized by hydrolysis of the commercially available structures **6a–b** using 2 N NaOH. Each synthesized compound was characterized by ¹H NMR, IR, and mass spectral analysis³⁴ prior to testing at the two transporter systems (Table 1). Activity was assessed by quantifying the ability of the compounds to inhibit the specific uptake of ${}^{3}H-L$ -gluamate by either system x_{c}^{-} or VGLUT. System x_c^- mediated uptake of L-glutamate (100 μ M) was measured in SNB19 glioma cells under Na-free conditions, corrected for nonspecific uptake, and normalized to protein content.⁹ VGLUT mediated uptake of L-glutamate (250 µM) was measured in synaptic vesicles isolated from rat brain, corrected for non-specific uptake, and normalized to protein content ²⁰. The rationale for testing compounds **3a-f** was based on the fact that a thienylglycine heterocycle contains an embedded cysteine. The imidazole structure was prepared as a control analog. Structure 3e was built as a chain extended homologue of 4-CPG, which was found to be a good inhibitor of system x_c^- but a poor inhibitor of VGLUT. The activity of **3e** also suggests the likelihood that the compounds are interacting with lipophilic domains associated with the transporter, as has also been shown to occur with EAAT inhibitors.¹² Interestingly, all the thiophene-containing structures showed inhibition of system xand VGLUT with the 5-bromo thienvlglycine **3d** and benzothienvlglycine 3f blocking about 60% and 70% of VGLUT uptake, respectively (Table 1). The imidazo analog 3c was completely inactive indicating the importance of the thiophene ring and/or possibly contribution by the sulfur atom. Most surprising in this initial screen was the finding that the biphenyl analog of CPG 3e blocked 73% of glutamate uptake at system x_c^- but was a poor inhibitor of VGLUT.

Sulfonic acid analogs of the amino acids phenylglycine, phenylalanine and thienylglycine **5a–i** were prepared to determine the role of stereochemistry, isostere contribution and limitations of the γ -carboxylic acid group. We rationalized that CPG and cysteate are inhibitors of system x_c^- and therefore, CPG analogs bearing a γ -sulfonic acid would be more potent, and potentially highly selective inhibitors when compared as inhibitors of VGLUT. Neither D- or L-4-sulfophenylalanine **5ab** nor α -methyl 4-sulfophenylalanine **5d** blocked glutamate uptake at either transporter (Table 1). Sulfonation of 4-bromophenylalanine was conducted to afford the phenylalanine-2-sulfonic acid analog **5c** to reduce the distance between the two acid groups, and render it a conformationally-restricted analog of homocysteate.

However, compound **5c** was a poor inhibitor of both transporters. (*R*)-4-Sulfo-phenylglycine **5e** did not block glutamate uptake at either transporter, yet **5f** was a selective inhibitor of system x_c^- . We attribute this selectivity to the fact that system x_c^- generally requires an *S*-configured amino acid center for inhibitors whereas VGLUT shows no need for this center and, in fact, does not require a basic amine.

Using (*S*)-4-sulfophenylglycine as a new lead, we prepared the thiophene analogs that position the sulfonic acid and amino acid groups at a distance midway between 4-sulfophenylglycine and homocysteic acid. Both (*R*)-**5h** and (*S*)-4-sulfothienylglycine **5g** blocked uptake of glutamate at system x_c^- , 45% and 70%, respectively (Table 1). The latter compound proved as potent as the endogenous substrate L-cystine. Unlike system x_c^- both were less potent at VGLUT.

The last set of analogs we prepared to test specificity differences between system x_c^- and VGLUT were aminothiophenecarboxylic acids **7ab**. Since the thiophene scaffold showed promise in system x_c^- inhibitors, we next queried whether or not replacement of the - amino acid group with an aniline-type amine and carboxylic acid would preferentially block VGLUT. In both instances, glutamate uptake was blocked at system x_c^- and not VGLUT indicating that the presence of an α -amino acid group is not a requirement for system x_c^- inhibitor structure. This is also consistent with the activity of sulfazaline, an inhibitor of system x_c^- , which lacks the free α -amino acid head group that typifies the majority of known inhibitors. Sulfasalazine is of particular interest because it suggests that system x_c^- may represent a viable point of therapeutic intervention in the treatment of glial brain tumors.³⁵

Download English Version:

https://daneshyari.com/en/article/1375154

Download Persian Version:

https://daneshyari.com/article/1375154

Daneshyari.com