Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Design and synthesis of tetrahydroisoquinoline derivatives as potential multidrug resistance reversal agents in cancer

Yu Li^a, Hui-bin Zhang^{a,*}, Wen-long Huang^{a,*}, Yun-man Li^b

^a Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China ^b Department of Pharmacology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China

ARTICLE INFO

Article history: Received 6 January 2008 Revised 22 March 2008 Accepted 19 April 2008 Available online 11 May 2008

Keywords: Tetrahydroisoguinoline derivatives Multidrug resistance P-glycoprotein

ABSTRACT

Exploration for new MDR-modulator utilizing tetrahydroisoquinoline as scaffold disclosed 6,7-dimethoxy-1-(3,4-dimethoxy)benzyl-2-(*N*-n-octyl-*N*'-cyano)guanyl-1,2,3,4-tetrahydroisoquinoline (7) as a readily accessible medicinal lead. Compound 7 possessed potent MDR reversal activity in the range of the reference compound verapamil, and had not cardiovascular activity compared to verapamil.

Crown Copyright © 2008 Published by Elsevier Ltd. All rights reserved.

Multidrug resistance (MDR)¹ is a major problem in cancer treatment. The typical MDR in tumor cells is mainly associated with a reduced intracellular drug accumulation and an increased cellular drug efflux. This phenomenon can be related to the overexpression of the energy-dependent efflux pump, P-glycoprotein $(P-gp)^2$, a 170-kDa protein that belongs to the ATP-binding cassette superfamily of transporters. Intense efforts to overcome MDR by influencing transporter expressions via signal transduction pathways or by direct transcriptional control have not been successful in clinical trials.³ A number of compounds, so-called chemosensitizers, are able to reverse the effect of Pgp on MDR.⁴ Tsuruo and coworkers⁵ were the first to demonstrate the ability of the calcium channel blocker, verapamil, to reverse MDR. The cardiovascular action of verapamil derivatives has always represented a problem in the development of MDR modulators possessing this structure and many efforts have been devoted to identifying more selective compounds.

Several bisbenzylisoquinoline alkaloids as tetrandrine and berbamine show anti-MDR properties and calcium antagonistic activity in various degrees.⁶ More than 100 tetrahydroisoquinoline derivatives were designed and synthesized for the search of novel calcium channel blockers by simplifying and optimizing tetrandrine in our group.⁷⁻¹² A series of N-cyanoguanyl-substituted tetrahydroisoquinoline derivatives had strong calcium antagonistic activities but showed almost no cardiovascular activities. Their MDR reversal

* Corresponding authors.

activities in vitro were evaluated, and the results showed that these compounds exerted different degrees of MDR reversal activities. Particularly, the activity of 6,7-dimethoxy-1-(3,4-dimethoxy)benzyl-2-(*N*-*n*-octyl-*N*'-cyano)guanyl-1,2,3,4-tetrahydro-isoquinoline (**7**) was comparable to that of the control verapamil.¹³

In this letter, the representative compound **7** was synthesized and evaluated in several assays of MDR reversal and cardiovascular activities in vitro and in vivo.

The synthetic route to the target compound 7 is outlined in Scheme 1. The synthesis of compound 7 utilized 3,4-dimethoxyphenylethyamine 1 and 3,4-dimethoxy-phenylacetic acid 2 as the starting material, which were converted to3 at 190 °C under N₂ protection in 84% yield. Treatment of **3** with POCl₃ in toluene under reflux provided **4** in 97% yield, followed by reduction with the yield of 64%. Next, the reaction at the N-position of compound 5 was achieved with dimethyl cyanocarbonimidodithioate in 25% yield. Reaction of key intermediate 6 with *n*-octylamine in toluene under reflux gave 7 with the yield of 34%. Compound 7 was characterized by IR, ¹HNMR, mass spectra, and elemental analysis.¹⁴

The in vitro MDR reversal activities of compound 7 against MCF-7, MCF-7/ADR, and K562/A02 cell lines were evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay¹⁵ with verapamil as reference drug (Tables 1 and 2). The results showed that compound 7 exhibited a well-defined trend in MDR reversal activities.

The in vivo efficacy of compound **7** was evaluated by using the resistant K562/A02 cell xenografts SCID nude mice.¹⁶ The results displayed that compound 7 had no direct effect on K562/A02 cell growth. The antitumor activity of adriamycin (ADM) was signifi-

E-mail addresses: zhanghb80@163.com (H. Zhang), ydhuangwenlong@126.com (W. Huang).

Scheme 1. Reagents and conditions: (a) N_2 , 190 °C, 3 h; (b) POCl₃, toluene, N_2 , 110 °C, reflux, 2.5 h; (c) KBH₄, diethylamine, methanol, rt, 22 h; (d) dimethyl cyanocarbon-imidodithioate, toluene, reflux, 30–50 h; (e) n-C₈H₁₇NH₂, toluene, reflux, 14–72 h.

Fluorescence value

Table 1

Inhibitory effects of compound **7** on the proliferation of MCF-7 cell line and MCF-7/ ADR cell line by MTT assay($\bar{X} \pm s, n = 5$)

Compound [#]	IC ₅₀ MCF-7	MCF-7##	IC50 MCF-/ADR	MCF-7/ADR##
Control ^{**}	96.2 ± 2.6		6864.2 ± 4.9	
Verapamil	92.8 ± 1.8	1.0	689.2 ± 8.6	10.0
7	79.7 ± 0.9	1.2	226.8 ± 3.5	30.3

^{*} IC₅₀ of adriamycin (nmol/L).

** 0.01‰ DMSO.

 $^{\#}$ Compounds were tested at 10 $\mu mol/L$

Reversal fold.

Table 2

Inhibitory effects of compound **7** on the proliferation of K562/A02 cell line by MTT assay($\bar{X} \pm s, n = 5$)

Compound [#]	Reversal ad	riamycin	Reversal vincristine		
	IC ₅₀ *	##	IC ₅₀ *	##	
Control ^{**}	18.13 ± 1.2		12.23 ± 0.4		
Verapamil	0.40 ± 0.2	45.30	1.55 ± 0.1	7.90	
7	0.38 ± 0.3	47.71	1.33 ± 0.1	9.20	

* IC₅₀ of adriamycin (μmol/L).

** 0.01‰ DMSO.

[#] Compounds were tested at 10 μmol/L.

** Reversal fold.

Tab	le 3											
The	effects	of	compound	7	on	K562/A02	cell	growing	of	bearing	cancer	mice
$(\bar{X} \pm$	s.n = 8	3)										

Group	Dose (mg/kg)	Tumor weight (g)	Inhibitory ratio (%)
0.9% NaCl	_	3.54±1.1°	-63.1
0.9% NaCl + ADM	_	2.15±0.4 [#]	0.9
Verapamil	8	3.61±1.2°	-66.4
Verapamil + 7	8	0.3±0.2 ^{**,##}	86.2
ADM	2	$2.17 \pm 0.4^{\#}$	
7	8	3.46±1.2°	-59.5
	2	3.52±1.1	-62.2
7 + ADM	8	0.32±0.2 ^{**,##}	85.3
	4	0.4±0.3 ^{**,##}	81.6
	2	0.64±0.3 ^{**,##}	70.5

* P < 0.05.

^{**} *P* < 0.01 vs ADM.

[#] P < 0.05.

^{##} P < 0.01 vs 0.9%NaCl.

Figure 1. The effects of compound **7** on cellular Rh123 accumulation in MCF-7/ ADM (n = 3).

cantly potentiated by the coadminstration of compound **7** (8, 4 and 2 mg/kg) in SCID nude mice (Table 3).

The rhodamine 123 (Rh123) accumulation assay was used to measure the P-gp inhibitory activity of compound **7**. The uptake of Rh123 in cells was followed by monitoring the fluorescence signal with the method described.¹⁷ The results showed that fluorescence value of compound **7** was increased obviously compared to

Figure 2. The effects of compound **7** on Rh123 accumulation in RBMEC ($^{*}P < 0.05$, $^{**}P < 0.01$ vs control) (n = 3).

Download English Version:

https://daneshyari.com/en/article/1376365

Download Persian Version:

https://daneshyari.com/article/1376365

Daneshyari.com