

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 3475-3478

Synthesis and structure–activity studies of antibacterial oxazolidinones containing dihydrothiopyran or dihydrothiazine C-rings

Adam R. Renslo,^{a,*} Gary W. Luehr,^a Stuart Lam,^a Neil E. Westlund,^b Marcela Gómez,^a Corrine J. Hackbarth,^a Dinesh V. Patel^a and Mikhail F. Gordeev^a

> ^aPfizer Global Research and Development, 34790 Ardentech Ct. Fremont, CA 94555, USA ^bPfizer Global Research and Development, 2800 Plymouth Rd. Ann Arbor, MI 48105, USA

> > Received 15 March 2006; accepted 30 March 2006 Available online 27 April 2006

Abstract—A new series of antimicrobial oxazolidinones bearing unsaturated heterocyclic C-rings is described. Dihydrothiopyran derivatives were prepared from the saturated tetrahydrothiopyran sulfoxides via a Pummerer-rearrangement/elimination sequence. Two new synthetic approaches to the dihydrothiazine ring system were explored, the first involving a novel trifluoroacetylative-det-rifluoroacetylative Pummerer-type reaction sequence and the second involving direct dehydrogenation of tetrahydrothiopyran S, S-dioxide intermediates. Final analogs such as 4 and 13 represent oxidized congeners of recent pre-clinical and clinical oxazolidinones. © 2006 Elsevier Ltd. All rights reserved.

The oxazolidinones, exemplified by linezolid, comprise a promising new class of antibacterial protein synthesis inhibitors with activity against methicillin-resistant *Staphylococcus aureus* (MRSA) and *Staphylococcus epidermidis* (MRSE).¹ The clinical and commercial success of linezolid has inspired the search for second-generation oxazolidinones with improved antibacterial potency and/or spectrum. Oxazolidinone analogs **1** and **2** exemplify this new generation of oxazolidinones and have been the subject of pre-clinical and clinical studies.² These new oxazolidinones substitute sulfur-containing heterocycles for the morpholine ring of linezolid and, in the case of **2**, introduce an additional fluorine atom in the B-ring.

Keywords: Antibacterials; Oxazolidinones; Dihydrothiazine; Dihydrothiopyran.

* Corresponding author. Tel.: +1 415 514 9698; fax: +1 415 514 4507; e-mail: adam.renslo@ucsf.edu

0960-894X/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2006.03.104

Structure–activity studies of these new C-ring types included the examination of oxidized congeners (i.e., analogs bearing dihydrothiopyran or dihydrothiazine ring systems). We considered that these unsaturated C-ring structures might confer improved activity against fastidious Gram-negative bacteria as is often observed for fully unsaturated (i.e., aromatic and heteroaromatic) C-ring oxazolidinone analogs.³ Here, we describe the synthesis and antibacterial activity of oxidized congeners of **1** and **2**, including a systematic exploration of B-ring and C-5 SAR. We also report new synthetic methods to access the dihydrothiazine ring system.

We prepared dihydrothiopyran and dihydrothiazine ring systems from the saturated precursors using Pummerer-type reaction sequence (Schemes 1 and 2).⁴ The synthesis of dihydrothiopyran analogs 4a-c began from

Scheme 1. Reagents and conditions: (a) (CF₃CO)₂O, *N*-methylmorpholine, CH₂Cl₂, rt, 20 h; (b) AcOOH, THF, rt (60–80% overall).

Scheme 2. Reagents and conditions: (a) (CF₃CO)₂O, *N*-methylmorpholine, CH₂Cl₂, rt; (b) mCPBA, CH₂Cl₂; (c) K₂CO₃, MeOH, CH₃CN, reflux (30–45% for three steps); (d) DDQ, dioxane, reflux, 22 h (35%); (e) 2.5 equiv LiO*t*-Bu, 1.3 equiv (*S*)-ClCH₂CH(OH)CH₂NHBoc, DMF (71%).

the sulfoxide analogs 3a-c, which were prepared as described elsewhere.⁵ Reaction of **3a-c** with trifluoroacetic anhydride in the presence of N-methylmorpholine produced the dihydrothiopyran ring system in a single step. This conversion presumably proceeds via initial Pummerer rearrangement followed by elimination of trifluoroacetic acid from the α -trifluoroacetoxy sulfide intermediate.⁶ Oxidation with peracetic acid in THF then provided sulfone analogs $4\hat{a}-c$. When thiomorpholine sulfoxide analogs $5a-b^5$ were subjected to similar reaction conditions, the unexpected trifluoroacetylsubstituted compounds 6a-b were obtained (Scheme 2). In this case, the initially formed dihydrothiazine intermediate reacts with excess trifluoroacetic anhydride in the reaction mixture, thus generating 6a-b. The trifluoroacetyl group in 6a-b could be removed under surprisingly mild conditions (K₂CO₃ in refluxing MeOH-MeCN). A final oxidation step then provided the desired dihydrothiazine S.S-dioxide intermediates 7a-b. For the bis-fluoro B-ring series (i.e., 7c) an alternative protocol was employed. Thiomorpholine intermediate 8^5 was oxidized with DDQ in refluxing dioxane to afford the dihydrothiazine 9 directly in modest yield along with recovered 8. This protocol was only effective with bis-fluorinated intermediates such as 8. The desired bis-fluoro oxazolidinone intermediate 7c was prepared from 9 using established procedures.7

The synthesis of analogs of various C-5 side-chain type was accomplished as shown in Scheme 3, starting from compounds $4\mathbf{a}-\mathbf{c}$ or $7\mathbf{a}-\mathbf{c}$. The C-5 acetamide in $4\mathbf{a}-\mathbf{c}$ was cleaved via acid hydrolysis and the resulting amines $10\mathbf{a}-\mathbf{c}$ acylated with anhydride or ester reagents. This two-step protocol provided dihydrothiopyran analogs **12a**– \mathbf{k} bearing dichloroacetamide, difluoroacetamide, or difluorothioacetamide⁸ functionality at C-5.

The synthesis of dihydrothiazine analogs 13a-k proceeded similarly, starting from Boc-protected aminomethyl oxazolidinones 7a-c. Removal of the Boc group in 7a-c was accomplished with TMSOTf in 2,6-lutidine,⁹ after we discovered that the dihydrothiazine ring in 7a-c was sensitive to typical acidic Boc cleavage conditions. The resulting amines 11a-c were then converted to dihydrothiazine analogs 13a-k as described above for 12a-k (Scheme 3).

The new oxazolidinone analogs were tested against a panel of Gram-positive and fastidious Gram-negative bacteria. Minimum inhibitory concentration (MIC, in $\mu g/mL$) values were determined using standard broth microdilution methods.¹⁰ The activities of dihydrothiopyran analogs are summarized in Table 1 and those for the dihydrothiazine analogs are presented in Table 2. MIC data for the progenitor analogs **1** and **2** are provided for comparison.

The in vitro activity of dihydrothiopyran analogs was similar to that of the parent tetrahydrothiopyran analog 1. The acetamides **4a**–**c** had similar Gram-positive activity as 1 but were generally less active against the Gramnegative pathogen *Haemophilus influenzae*. Surprisingly, the degree of B-ring fluorination had little impact on overall potency, although a mono-fluoro B-ring does appear optimal for activity against *H. influenzae* and *Moraxella catarrhalis*. Among the C-5 side chains examined, the dichloroacetamide variant (e.g., **12a**, **12e**, and **12i**) consistently produced the best Gram-negative activity,

Scheme 3. Reagents and conditions: (a) for 4a–c: HCl, MeOH, 75 °C, 20 h; for 7a–c: TMS-OTf, 2,6-lutidine, CH₂Cl₂, rt, 1 h, then MeOH, 30 min; (b) (RC=O)₂O, Py, CH₂Cl₂ (80% overall); (c) CHF₂C(O)OEt or Ph₂CHCH₂CH₂OC(S)CHF₂, Et₃N, MeOH (40–80% overall).

Download English Version:

https://daneshyari.com/en/article/1377223

Download Persian Version:

https://daneshyari.com/article/1377223

Daneshyari.com