

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 4699-4702

Synthesis and SAR of novel conformationally restricted oxazolidinones possessing Gram-positive and fastidious Gram-negative antibacterial activity. Part 2: Amino substitutions on heterocyclic D-ring system

Allison L. Choy,* J. V. N. Vara Prasad, Frederick E. Boyer, Michael D. Huband and Michael R. Dermyer

Pfizer Global Research and Development, 2800 Plymouth Rd., Ann Arbor, MI 48105, USA

Received 17 April 2007; revised 23 May 2007; accepted 25 May 2007

Available online 31 May 2007

Abstract—A novel series of conformationally restricted oxazolidinones was synthesized, in which the heterocyclic D ring was substituted with various amino groups. Several analogs exhibited potent activity against both Gram-positive and fastidious Gram-negative organisms. Certain amino-substituted analogs also exhibited improved aqueous solubility compared to the corresponding un-substituted heterocyclic D-ring analogs.

© 2007 Elsevier Ltd. All rights reserved.

Linezolid (Zyvox™) 1 is the first oxazolidinone to be approved for clinical use against serious Gram-positive bacterial infections (Fig. 1).1 We have been interested in developing oxazolidinone antibacterial agents with a broader spectrum of antibacterial activity. We recently disclosed a novel series of conformationally restricted oxazolidinones, exemplified by the lead compound 2.^{2,3} Compound 2 has activity against Gram-positive (Staphylococcus aureus MIC = 0.5 µg/mL, Streptococcus pneumoniae MIC = $0.25 \,\mu\text{g/mL}$) and the fastidious Gram-negative respiratory tract pathogens (Haemophilus influenzae and Moraxella cattarhalis MICs = 2 µg/ mL).2 However, the poor aqueous solubility of compound 2 (14 µg/mL) was considered a barrier to good oral absorption. In order to improve the aqueous solubility of this series, the 3-position of the pyrazole ring was substituted with hydrophilic functionality to give amino-substituted analogs 3. The synthesis and SAR of these amino-substituted analogs is presented here.3

The amino-substituted pyrazoles 3 were synthesized from the known ketone 4^4 in two steps as shown in

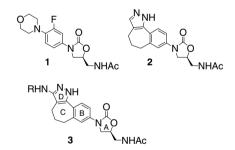


Figure 1.

Scheme 1. Bromination of ketone 4 with pyridinium tribromide and glacial acetic acid gave the bromoketone 5 in quantitative yield. Treatment of bromoketone 5 with the appropriately substituted thiosemicarbazide gave the desired amino-substituted pyrazoles 3, albeit in low to modest yields (5–50%).⁵

Thiosemicarbazides that were not commercially available were prepared according to literature methods⁶ as shown in Scheme 2. The appropriately substituted amines **6a**–**h** were treated with triethylamine and carbon disulfide to give the dithiocarbamates **7a**–**h**. The dithiocarbamates **7a**–**h** were then heated with hydrazine monohydrate to give the thiosemicarbazides **8a**–**h**. In the case

Keywords: Oxazolidinones; Antibacterials; Pyrazoles.

^{*}Corresponding author. Tel.: +1 734 622 4829; fax: +1 734 622 2265; e-mail: Allison.Choy@pfizer.com

Scheme 1. Reagents and conditions: (a) pyridinium tribromide, glacial HOAc, CH₂Cl₂, rt, 100%; (b) abs EtOH, 88 °C, 5-50%.

$$X \longleftrightarrow_{n} NH_{2} \xrightarrow{a} X \longleftrightarrow_{n} N \xrightarrow{S} SCH_{3} \xrightarrow{b}$$

6a-h

 $X \longleftrightarrow_{n} N \xrightarrow{N} NHNH_{2}$

8a-h

a, n = 1; X = CH₃; b, n = 1; X = OCH₃; c, n = 2; X = OCH₃; d, n = 1; X = NHCO₂+B₁U₂ a, n = 2; X = OCH₃; d, n = 1; X = NHCO₂+B₁U₂ a, n = 2; X = OCH₃; d, n = 1; X = NHCO₂+B₂U₂ a, n = 2; X = OCH₃; d, n = 1; X = NHCO₂+B₂U₂ a, n = 2; X = OCH₃; d, n = 1; X = NHCO₂+B₂U₂ a, n = 2; X = OCH₃; d, n = 1; X = NHCO₂+B₂U₂ a, n = 2; X = OCH₃; d, n = 1; X = NHCO₃+B₂U₂ a, n = 2; X = OCH₃; d, n = 1; X = OCH₃; d

 $= OCH_3; \ \textbf{d}, \ n=1; \ X = NHCO_2t \cdot Bu; \ \textbf{e}, \ n=2; \ X = NHCO_2t \cdot Bu; \ \textbf{f}, \ n=2; \ X = N(CH_2CH_3)_2; \ \textbf{g}, \ n=1; \ X = OSi(CH_3)_2t \cdot Bu; \ \textbf{h}, \ n=2; \ X = OSi(CH_3)_2t \cdot Bu$

Scheme 2. Reagents and conditions: (a) i—CS₂, NEt₃, CH₃OH, Et₂O, 0 °C-rt; ii—CH₃I, 0 °C-rt; (b) hydrazine monohydrate, 2-methoxymethanol, 80 °C.

of 4-(2-*tert*-butyldimethylsilanyloxyethyl)-3-thiosemicarbazide **8g** and 4-(3-*tert*-butyldimethylsilanyloxypropyl)-3-thiosemicarbazide **8h**, reaction with bromoketone **5** resulted in in situ cleavage of the silyl ethers and isolation of the hydroxy analogs **3i** and **3o**, respectively.

The 3-aminopyrazole analog 3a (R = H) and the *N*-acyl pyrazoles 3s-t were prepared from the *p*-methoxybenzyl (PMB) amine 3h as shown in Scheme 3. Treatment of the *p*-methoxybenzylamine 3h with triethylsilane and trifluoroacetic acid (TFA) gave the free amine 3a in 87% yield. Coupling of amine 3a with (S)-2,2-dimethyl-1,3-dioxolane-4-carboxylic acid, followed by treatment with 1 M hydrochloric acid, gave amide 3s. Similarly, amine 3a was coupled with benzyloxyacetic acid, followed by debenzylation with palladium on carbon to give amide 3t. The amino analogs 3k and 3q were prepared in 43-

54% yields by removal of the Boc-protecting groups in **3u** and **3v** with acetyl chloride in methanol.

The amino-substituted oxazolidinone analogs were tested against a panel of Gram-positive and fastidious Gram-negative bacteria.⁷ Minimum inhibitory concentration (MIC, in µg/mL) values were determined by microbroth methodology.⁷ The *Escherichia coli* in vitro transcription and translation (EC TnT) assay was performed in 96-well microtiter plates using a luciferase reporter system.⁸ The activities of the amino-substituted analogs are summarized in Table 1. MIC data for linezolid 1 and the lead pyrazole compound 2 are provided for comparison.

The in vitro activity of analogs with small alkylamino substituents at the 3-position of the pyrazole ring (3ae) was similar to that of the lead pyrazole compound 2 (Table 1), except that they were somewhat less active against the Gram-positive pathogens S. aureus and Enterococcus faecalis. The aminopyrazoles 3a-c retained activity against the fastidious Gram-negative bacteria H. influenzae and Moraxella catarrhalis (MICs = $2-4 \mu g/mL$). Analogs with larger alkylamino substituents (3d-e) showed a loss of fastidious Gramnegative activity, but maintained Gram-positive antibacterial activity similar to or better than linezolid 1. In general, analogs with 'R' groups containing polar functionalities showed reduced antibacterial activity. The substituted ethylaminopyrazole analogs 3i-m and the substituted propylaminopyrazole analogs 30-r exhibited decreased antibacterial activity against both Gram-positive and fastidious Gram-negative organ-

Scheme 3. Reagents and conditions: (a) Et₃SiH, TFA, CH₂Cl₂, 87%; (b) i—N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride, pyridine, (S)-2,2-dimethyl-1,3-dioxolane-4-carboxylic acid, 25%; ii—1 M HCl, THF, 85%; (c) i—N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride, pyridine, benzyloxyacetic acid, 47%; ii—Pd/C, MeOH, 73%; (d) CH₃COCl, CH₃OH, 0 °C-rt, 43–54%.

Download English Version:

https://daneshyari.com/en/article/1377438

Download Persian Version:

https://daneshyari.com/article/1377438

<u>Daneshyari.com</u>