

Available online at www.sciencedirect.com



Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 1865-1870

## A new 4-(2-methylquinolin-4-ylmethyl)phenyl P1' group for the β-amino hydroxamic acid derived TACE inhibitors

Xiao-Tao Chen,<sup>a,\*</sup> Bahman Ghavimi,<sup>a</sup> Ronald L. Corbett,<sup>a</sup> Chu-Biao Xue,<sup>a</sup> Rui-Qin Liu,<sup>b</sup> Maryanne B. Covington,<sup>b</sup> Mingxin Qian,<sup>c</sup> Krishna G. Vaddi,<sup>c</sup> David D. Christ,<sup>c</sup> Karl D. Hartman,<sup>c</sup> Maria D. Ribadeneira,<sup>c</sup> James M. Trzaskos,<sup>b</sup> Robert C. Newton,<sup>b</sup> Carl P. Decicco<sup>a</sup> and James J.-W. Duan<sup>a</sup>

<sup>a</sup>Discovery Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543-4000, USA <sup>b</sup>Discovery Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543-4000, USA <sup>c</sup>Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543-4000, USA

> Received 27 November 2006; revised 11 January 2007; accepted 12 January 2007 Available online 24 January 2007

**Abstract**—A new P1' group for TACE inhibitors was identified by eliminating the oxygen atom in the linker of the original 4-(2-methylquinolin-4-ylmethoxy)phenyl P1' group. Incorporation of this 4-(2-methylquinolin-4-ylmethyl)phenyl group onto different  $\beta$ -aminohydroxamic acid cores provided compound **18**, which demonstrated potent porcine TACE (p-TACE) and human whole blood activity, excellent PK properties, and good selectivity against a variety of MMPs. © 2007 Elsevier Ltd. All rights reserved.

Tumor necrosis factor- $\alpha$  (TNF- $\alpha$ ) is a pro-inflammatory cytokine, which plays a key role in initiating defensive immune responses upon exposure to diverse pathogens.<sup>1</sup> The pathological properties of over-expressed TNF- $\alpha$  have been well documented for diseases, such as rheumatoid arthritis,<sup>2</sup> Crohn's disease,<sup>3</sup> psoriasis,<sup>4</sup> and septic shock.<sup>5</sup> The clinical success of the anti-TNF- $\alpha$  biologics for the treatment of rheumatoid arthritis,<sup>6</sup> Crohn's disease,<sup>7</sup> and psoriasis<sup>8</sup> has provided validation for suppressing the circulating TNF- $\alpha$  as a therapeutic target. Thus, there has been broad interest in pursuing small molecules to intervene in the circulating TNF- $\alpha$  production. One such target is TNF- $\alpha$  converting enzyme (TACE),<sup>9</sup> which is responsible for the shedding of soluble TNF- $\alpha$  from membrane-bound pro-TNF- $\alpha$ .

The initial leads of TACE inhibitor disclosed in the literature were derived from broad spectrum MMP inhibitors, due to high sequence similarity in the active site regions of TACE and MMPs.<sup>10</sup> In fact, prior to the discovery of TACE in 1997, some synthetic hydroxamate-based inhibitors of MMPs were found to block

0960-894X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.01.041

TNF- $\alpha$  release in vivo upon endotoxin stimulation.<sup>11</sup> At the early stage of TACE discovery program, efforts were focused on the improvement of TACE potency through rational drug design based on MMP inhibitors.<sup>12</sup> Given the toxicity observed with most broad spectrum MMP inhibitors in the clinic,<sup>13</sup> recent efforts have been directed toward achieving TACE selectivity over MMPs. As a result, a number of potent and selective TACE inhibitors have been identified.<sup>14</sup>

More recently, we disclosed a number of constrained  $\beta$ -amino hydroxamic acids as potent and selective TACE inhibitors (1, 2, and 3) (Fig. 1),<sup>15</sup> that contain

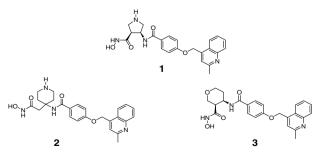



Figure 1. Previously disclosed  $\beta$ -amino hydroxamic acids as potent TACE inhibitors.

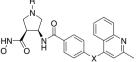
Keywords: Anti-inflammatory agent; TACE inhibitor; Matrix metalloproteinase inhibitor;  $\beta$ -Amino hydroxamic acid.

<sup>\*</sup> Corresponding author. Tel.: +1 609 252 3049; fax: +1 609 252 6804; e-mail: xiao-tao.chen@bms.com

the 4-(2-methylquinolin-4-ylmethoxy)phenyl P1' group. A campaign to identify alternatives to this P1' group was also carried out. Our goal was to identify either a different heterocycle replacement for the quinoline or an alternative linker between the phenyl and quinolinyl groups. Our efforts to identify different heterocycle replacements for the 2-methylquinoline group were recently disclosed.<sup>16</sup> Herein, we wish to describe our efforts on modification of the linker region, which eventually led to the identification of the 4-(2-methylquinolin-4-ylmethyl)phenyl as an effective P1' group.

The initial structure-activity relationships (SAR) were carried out on the 4-aminopyrrolidine-3-carbohydroxamic acid series with a one-atom linker and the results are shown in Table 1. Using the TACE inhibitor 1 as a reference compound since it was potent in both por-cine TACE assay  $(p\text{-}TACE)^{9b,17}$  (IC<sub>50</sub> = 6.3 nM) and human whole blood cell assay (WBA) ( $IC_{50} = 75 \text{ nM}$ ), shortening the tether length by removal of the methylene group gave compounds 4 and 5, which retained activity against p-TACE (IC<sub>50</sub> values of 1.3 and 3.5 nM for 4 and 5, respectively). However, this alteration resulted in a 10-fold loss in WBA potency. In contrast, the methylene linker analogs (i.e., compounds 6 and 7) had comparable biological activities in both p-TACE assay and WBA compared to the reference compound 1. These results revealed that the two-atom linker in compound 1 can be shortened by eliminating the oxygen, but not the methylene group. Based on these results, further SAR studies were focused on the left-hand side of the molecule while keeping the new P1' substituent with the methylene linker constant.

The SAR involving replacement of the hydrogen on the pyrrolidine nitrogen in compound 7 with different substituents is provided in Table 2. A variety of groups, such as methyl (8), branched alkyl (9–10), propargyl (11–12), pivaloyl (13), 1-butanesulfonyl (14), and alkoxycarbonyl (6, 15), were well tolerated, affording  $IC_{50}$  values of 1.1–4.3 nM. However, the WBA potency and the cell permeability of these compounds were dependent on the nature of the substituents. The methyl compound 8 showed potent WBA activity but low Caco-2 permeability. Since low caco-2 permeability of a TACE inhibitor had consistently resulted in poor pharmacoki-


netic property as demonstrated at the early stage of this program, we tried to improve both Caco-2 permeability and WBA potency in parallel in our SAR investigation. Increasing the bulk of the substituent from methyl to isobutyl (9) and neopentyl (10) gradually improved the Caco-2 permeability, but compromised WBA activity. A propargyl group or a 2-butynyl group on the pyrrolidine nitrogen provided analogs 11 and 12, which demonstrated potent WBA activity and acceptable cell permeability. Analogs with a pivaloyl (13), a 1-butanesulfonyl (14) or a methoxycarbonyl (15) substituent on the pyrrolidine nitrogen retained potency in the WBA, but exhibited poor cell permeability. The potent WBA activities and the acceptable cell permeability of 11 and 12 prompted us to evaluate these two compounds in rat N-in-1 PK studies (N compounds in one dosage)<sup>18</sup> (Table 3). Although both of these compounds showed similar oral bioavailability ( $F_{po}$  19–20%), 11 exhibited a much shorter half-life and lower oral drug exposure compared to 12, which is attributed to the relatively higher clearance associated with 11.

Next, we examined the effectiveness of incorporating the 4-(2-methylquinolin-4-ylmethyl)phenyl P1' group onto other carbocycle or heterocycle cores.<sup>15</sup> As shown in Table 4, all of the compounds except 16 were potent against p-TACE. 16 was a weak inhibitor of p-TACE and completely inactive up to 3 µM in the WBA. A comparison of the two five-membered cyclic compounds 17 and 19 revealed that the more polar tetrahydrofuran ring was superior to the less polar cyclopentane ring in terms of WBA activity. 17, however, was inferior to 19 in the Caco-2 permeability assay. The six-membered tetrahydropyran ring provided potent WBA activity and acceptable Caco-2 permeability. Compound 18 also demonstrated favorable PK properties with high oral drug exposure and good oral bioavailability in rat and dog (Table 5).

Because of the most favorable in vitro potencies and PK properties of 18, we examined its selectivity profile against a panel of MMPs (Table 6). Compound 18 was selective against the MMPs in the panel.

In an attempt to improve the profile of **18**, we investigated the effect of substitution on the quinoline ring. With

| Table 1. | Biological | evaluation | of a | analogs | with | an | oxvgen | and | methylene ! | linker |
|----------|------------|------------|------|---------|------|----|--------|-----|-------------|--------|
|          |            |            |      |         |      |    |        |     |             |        |



| Compound | R                               | Х                   | p-TACE <sup>a</sup> IC <sub>50</sub> (nM) | WBA <sup>b</sup> IC <sub>50</sub> (nM) |
|----------|---------------------------------|---------------------|-------------------------------------------|----------------------------------------|
| 1        | Н                               | -OCH <sub>2</sub> - | $6.3 \pm 1.6$                             | $75 \pm 22$                            |
| 4        | -CO <sub>2</sub> - <i>t</i> -Bu | -O-                 | $1.3 \pm 0.3$                             | $750 \pm 180$                          |
| 5        | Н                               | -O-                 | $3.5 \pm 1.1$                             | 920 ±180                               |
| 6        | -CO <sub>2</sub> - <i>t</i> -Bu | -CH2-               | <1                                        | $96 \pm 14$                            |
| 7        | Н                               | -CH2-               | <1                                        | $67 \pm 17$                            |

a (n = 2-6).

$$^{0}(n = 3-12).$$

Download English Version:

https://daneshyari.com/en/article/1377757

Download Persian Version:

https://daneshyari.com/article/1377757

Daneshyari.com