

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 3453-3458

Pyrrolo[1,2-a][1,4]benzodiazepine: A novel class of non-azole anti-dermatophyte anti-fungal agents

Lieven Meerpoel,^{a,*} Jef Van Gestel,^a Frans Van Gerven,^a Filip Woestenborghs,^a Patrick Marichal,^a Vic Sipido,^a Gilkerson Terence,^b Roger Nash,^b David Corens^a and Ray D. Richards^c

^aJohnson & Johnson Pharmaceutical Research & Development, A Division of Janssen Pharmaceutica N.V.,

Turnhoutseweg 30, B-2340 Beerse, Belgium

^bWYE College, University of London, WYE, Ashford, Kent, TN255AH, UK

^cKey Organics Ltd, Highfield Industrial Estate, Camelford, Cornwall PL32 9QZ, UK

Received 8 February 2005; revised 26 April 2005; accepted 2 May 2005 Available online 9 June 2005

Abstract—Broad screening revealed compound **1a** to be a novel anti-fungal agent with high specificity towards dermatophytes. The anti-fungal structure–activity relationship of this novel class of 5,6-dihydro-4*H*-pyrrolo[1,2-*a*][1,4]benzodiazepines is described together with its mode of action that appeared to be the inhibition of squalene epoxidase. Preliminary in vivo results of the most active compounds are also reported.

© 2005 Elsevier Ltd. All rights reserved.

In view of the increasing resistance to existing azole antifungals, 1 and the lack of sufficient chemical diversity in the existing classes of anti-fungals, the need for new anti-fungals remains high. Although potent systemic broad-spectrum anti-fungals are preferred, there is ample room for compounds with a more focused application. In fact, the largest branch of the anti-fungal market is dermatology. It includes conditions such as onychomycosis, athlete's foot, tinea corporis and the like, that can be treated by both topical and oral regimes. Two major classes are dominating this market: the azole anti-fungals (14- α -demethylase inhibitors) such as ketoconazole, 3 itraconazole and fluconazole, 5 and squalene epoxidase inhibitors such as thiocarbamates (e.g., tolnaftate), naftifine, terbinafine and butenafine (Scheme 1).

As well as target directed projects, general in vitro screening of the corporate compound library on yeast and mould species was conducted, revealing compound **1a** to be a novel molecule with specific activity against dermatophyte species, *Aspergillus fumigatus* and *Candida parapsilosis*. In this communication, we would like to report on the preliminary structure–activity relationship of this novel class of anti-fungals.

Compound 1a has a 5,6-dihydro-4-(4-ethylphenyl)-4Hpyrrolo[1,2-a][1,4]benzodiazepine structure, which is scarcely described in the literature, 10 and the potential anti-infective activity of this heterocyclic class has not been reported. The synthesis of this novel template is easily achieved via a four-step synthesis depicted in Scheme 2. Substituted 2-amino-benzonitriles are commercially accessible or easily accessible via synthetic routes described in the literature. 11 The amine was cyclized in good yield via a modified Hantzsch pyrrole synthesis using 2,5-diethoxytetrahydrofurane in refluxing acetic acid. Then the nitrile was reduced using lithium aluminium hydride in dry tetrahydrofuran. Finally, the corresponding 2-N-pyrrolobenzyl amine was treated with the selected aldehyde to give the corresponding imine. This immediately gave an intramolecular Mannich reaction upon treatment with dry acid,

Keywords: Anti-fungal; Anti-dermatophyte; 4*H*-pyrrolo[1,2-*a*]-[1,4]benzodiazepine.

^{*} Corresponding author. Tel.: +32 14 60 56 94; fax: +32 14 60 53 44; e-mail: lmeerpoe@prdbe.jnj.com

Kaken Pharmaceuticals

Scheme 1.

Download English Version:

https://daneshyari.com/en/article/1378786

Download Persian Version:

https://daneshyari.com/article/1378786

<u>Daneshyari.com</u>