

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 815–820

Synthesis and antiprotozoal activity of some new synthetic substituted quinoxalines

Xu Hui,[†] Julie Desrivot, Christian Bories, Philippe M. Loiseau, Xavier Franck, Reynald Hocquemiller and Bruno Figadère^{*}

Address Laboratoire de Pharmacognosie et Groupe Chimiothérapie Antiparasitaire (associé au CNRS-BioCIS) Faculté de Pharmacie, Université de Paris-Sud, rue J.B. Clément, 92296 Châtenay-Malabry, France

> Received 10 October 2005; revised 7 November 2005; accepted 7 November 2005 Available online 23 November 2005

Abstract—A series of 29 new quinoxalines was synthesized and evaluated in vitro against several parasites (*Leishmania donovani*, *Trypanosoma brucei brucei*, and *Trichomonas vaginalis*). Several of them displayed interesting activities, and particularly four quinoxaline amides showed in vitro antileishmanial properties (IC₅₀ less than 20 μ M). © 2005 Elsevier Ltd. All rights reserved.

Several hundred millions of people, in developing countries, faced infection diseases, due to parasites, such as leishmaniases and trypanosomiasis that have significant health and economical impacts because of a high mortality rate per year. There is, thus, an urgent need for new drugs for the chemotherapy of these diseases, since conventional treatments are often inadequate, toxic or are becoming less effective due to emergence of numerous resistances.¹

In our search for new bioactive compounds, we have found that 2-alkylquinolines and 2-arylquinolines, isolated from plants² or prepared by total synthesis,^{3a-c} can be new drug candidates, and exhibit antiprotozoal activity (e.g., against *Leishmania* sp.,⁴ *Plasmodium*,⁵ *Trypanosoma* sp.,⁶ and *Trichomonas vaginalis*⁷), and were found to inhibit the human immunodeficiency virus of type-1 (HIV-1) integrase,⁸⁻¹⁰ as well as the proliferation of HTLV-1 transformed cell lines (HUT-102).¹¹ In this letter, in continuation of the search for new antiparasitic compounds, we report on the in vitro antiprotozoal activity of several synthetic substituted quinoxalines.

Up to now, only a few quinoxaline derivatives have been prepared and evaluated against protozoa,¹² whereas


quinoxaline derivatives are important components of several pharmacologically active compounds.¹³ In this paper, we carried out new pharmacomodulations including substituents having antiprotozoal properties such as quinoline, and *p*-nitrophenyl moieties or substituents modifying the hydrophobicity of the compounds, such as alkyl chains (C6 to C15) and various aromatic rings. Thus, new quinoxaline amides and amines 1-29 were prepared by treating 2-amino-4-nitroaniline with several 1,2-dioxoalkanes (1 equiv.)¹⁴ followed by nitro-reduction and either amide formation (compounds 1-8) or reductive amination (for compounds 14-18) (Scheme 1). For the bromo derivatives, bromination of the intermediate 7-aminoquinoxaline was performed prior to amide formation (compounds 9–13, Scheme 1). Whereas quinoxalines 19-29 were obtained by condensation of 2-amino-4-aminobenzoic acid with several 1,2-dioxoalkanes (1 equiv) followed by amide formation (compounds 19-29, Scheme 2). All the 29 synthesized compounds gave satisfactory spectral data (¹H and ¹³C NMR data, MS and UV spectroscopic data). Then compounds 1-29 were evaluated against several parasites (Leishmania donovani, Trypanosoma brucei brucei, and T. vaginalis).

Antiprotozoal activities of the synthesized quinoxalines 1–29 are presented in Table 1. Against the promastigote forms of *L. donovani*¹⁵ compounds 5, 6, 7, and 27 were the most active ones (with IC₅₀: 12.5, 8.2, 18.5, and 18.4 μ M, respectively) being slightly less potent than the reference drug, miltefosine (IC₅₀: 7.3 μ M). Interestingly, compounds 26, 27, and 28 in which the amide

Keywords: Quinoxalines; Amides; Amines; Synthesis; Bioassays.

^{*} Corresponding author. Tel.: +33 01 46 83 55 92; fax: +33 01 46 83 53 99; e-mail: bruno.figadere@cep.u-psud.fr

[†] Present address: College of Life Science, Northwest Sci-Tec University of Agriculture and Forestry, China.

Scheme 1. Reagents and condition: Synthesis of quinoxalines 1–18: (a) HOAc or EtOH reflux; (b) SnCl₂, EtOH; (c) Br₂, HOAc; (d) EDC, HOBt, Et₃N or oxalyl chloride then Et₃N, RCO₂H, RNH₂; (e) NaBH₃CN, HOAc, RCHO.

bond has been inverted showed different activities (IC₅₀: $>300, 18.4, >300 \mu$ M, respectively). However, the amide group position did not seem to be essential for antileishmanial properties since compound 27 had similar activity as compound 7. The sole other quinoxaline amide showing some activity is compound 2 (IC₅₀: 116.9 μ M) possessing a simple aliphatic side chain. Then aminoquinoxalines 14, 15, 16, and 18 showed moderate activity (IC₅₀: 79.5, 92.4, 46.3, and 34.0 µM, respectively), but to a lesser extent that the previous compounds. All other tested quinoxalines did not show any activity against L. donovani. The tests against the trypomastigote forms of T. b. brucei were performed as described.¹⁶ The same compounds 27, 5, 6, and 7 showed again activity, expressed as minimum active concentration (MAC: 200, 200, 200, and 150 μ M, respectively), but were by far less active than melarsoprol, the reference drug (MAC: $0.1 \,\mu$ M). Although the quinoxaline amide derivative 24 showed also a slight activity (MAC: 200μ M), all other quinoxalines did not show any particular activity (MAC >300 μ M). Against T. vaginalis,¹⁷ the aminoquinoxalines 15, 16, 17 and the amide 7 showed an activity (IC₅₀: 264, 243, 191, and 126 µM, respectively),

being still less potent than the reference drug, metronidazole (IC₅₀: 5.8μ M), whereas the other compounds showed no activity.

Concerning the specificity of action, compounds 2, 14, and 18 specifically act on *L. donovani* promastigotes, compound 24 on *T. b. brucei* trypomastigotes, and compound 17 on *T. vaginalis*, suggesting the possibility of action on target specific to each parasite. However, compounds 7 act in the same way against the three Protozoa, suggesting that this compound could affect target(s) common to the three parasites. The difference in these activities could also be the result of compound uptake that is different in these parasites.

In conclusion, this study showed that among the 29 quinoxalines tested in these assays, four of them were found to exhibit interesting antileishmanial activity against *L. donovani* (IC₅₀ less than 20 μ M), five of them against *T. b. brucei*, and four of them against *T. vaginalis*. No clear-cut structure–activity relationship emerged in this series although, none of the brominated quinoxalines displayed any activity, neither any

Download English Version:

https://daneshyari.com/en/article/1379230

Download Persian Version:

https://daneshyari.com/article/1379230

Daneshyari.com