

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters 16 (2006) 1045-1048

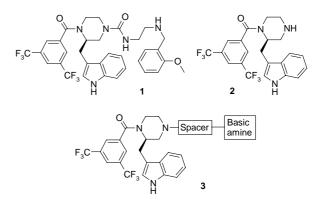
Bioorganic & Medicinal Chemistry Letters

Piperazinyl oxime ethers as NK-1 receptor antagonists

Adri van den Hoogenband, Jan H. van Maarseveen,[†] Andrew C. McCreary, Arie T. Mulder, Guus J. M. van Scharrenburg, Herman H. van Stuivenberg, Theo J. J. Zethof, Barbara Zijta and Wouter I. Iwema Bakker^{*}

Solvay Pharmaceuticals, Research Laboratories, C.J. van Houtenlaan 36, 1381 CP Weesp, The Netherlands

Received 22 September 2005; revised 21 October 2005; accepted 22 October 2005 Available online 11 November 2005

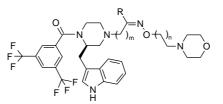

Abstract—The synthesis and structure–activity relations for a new class of centrally active NK-1 receptor antagonists are described. The new compounds are based on piperazine 2 and contain an oxime ether functionality. Several new compounds have high affinity for the NK-1 receptor and show good antagonistic activity in the gerbil foot-tapping assay. © 2005 Elsevier Ltd. All rights reserved.

The neuropeptide Substance P and its Neurokinin-1 (NK-1) receptor have been related to various biological disorders such as anxiety, depression,¹ emesis,² asthma and inflammatory bowel disease (IBD).³ Furthermore, the first brain penetrant NK-1 receptor antagonist (Aprepitant; MK-869) has reached the market for the treatment of chemotherapy induced nausea and vomiting (CINV) and NK-1 receptor antagonists have shown their clinical effectiveness in Phase II studies for depression.⁴ The latter result prompted us to examine a centrally acting NK-1 receptor antagonist for our CNS-drug discovery programme.

We have previously reported on a series of indolyl methyl-N,N'-bisacylpiperazines, a representative of which is $1,^5$ as potent NK-1 receptor antagonists (see Table1); however, 1 did not penetrate the brain⁶ and thus showed no activity in the gerbil foot-tapping assay.⁷ Based on in-house experience with poor brain penetration of compounds containing a urea function, it was postulated that the urea function, solely serving as a spacer unit between the required basic amine pharmacophore and the piperazine scaffold, was the cause of inactivity. Therefore, a programme was initiated to synthesise NK-1 receptor antagonists starting

0960-894X/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2005.10.077

from the key pharmacophoric fragment 2 and introducing the essential basic element via an alternative spacer giving 3. Due to our longstanding experience with oxime ethers,⁸ having good brain penetration (i.e., fluvoxamine), an oxime ether function was selected as the key moiety in the spacer. Herein we report a series of novel compounds with several oxime ether spacers that act as highly potent CNS available NK-1 antagonists.


At first, a series of compounds was synthesised in which the influence of spacer length and spacer substitution was studied, whereas the basic amine was kept constant as a morpholino-group. Recently, researchers of Fujisawa reported a morpholine as the optimal basic pharmacophore in NK-1 antagonists.⁹

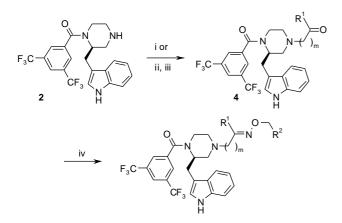
Keywords: Neurokinin; Synthesis; SAR; Oxime ethers.

^{*} Corresponding author. Tel.: +31 294 479613; fax: +31 294 477138; e-mail: wouter.iwema-bakker@solvay.com

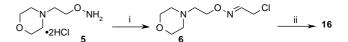
[†] Present address: Van 't Hoff Institute of Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.

Table 1. Chain length and substituent variations

Compound	R	т	п	hNK-1 pK _i ^a	hNK-1 pA2 ^b	Gerbil FT ED ₅₀ (mg/kg po) ^c
1				8.6 ± 0.2 (3)	8.9 ± 0.1 (3)	>10
8	Me	1	1	8.0 ± 0.2 (3)	9.8 ± 0.2 (3)	1.3
9	Me	1	2	7.9 ± 0.2 (3)	9.8 ± 0.2 (6)	7.4
10	Me	2	1	9.4 ± 0.2 (4)	8.9 ± 0.3 (3)	2.0
11	Me	2	2	9.7 ± 0.5 (3)	9.0 ± 0.5 (4)	5.5
12	Me	3	1	8.9 ± 0.3 (4)	8.8 ± 0.3 (3)	2.0
13	Ph	1	1	7.7 ± 0.2 (3)	8.5 ± 0.4 (4)	n.d.
14	Ph	1	2	8.2 ± 0.3 (3)	8.9 ± 0.3 (4)	>10
15	Ph	2	1	8.0 ± 0.3 (4)	8.9 ± 0.3 (3)	>10
16	Н	1	1	8.9 ± 0.2 (3)	9.2 ± 0.1 (4)	2.0
17	Н	1	2	8.9 ± 0.3 (4)	9.2 ± 0.2 (4)	2.3


^a Displacement of [³H]-labelled Substance P from the cloned hNK-1 receptor expressed in CHO cells.

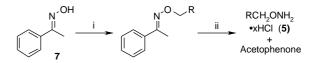
^b Effect on IP₃ turnover by phospholipaseC positively linked to hNK-1 receptor expressed in CHO cells.


^c Inhibition of foot-tapping by po administration of test compound 60 min prior to icv infusion of GR-73632. The duration of foot-tapping was recorded for 5 min.

Most oxime ethers were made from the corresponding ketones and aldehydes 4 by reaction with the appropriate alkoxyamine (Scheme 1), except for compound 16. All oxime ethers were obtained as E/Z-mixtures. The ketones 4 were obtained from 2 by alkylation with a suitable alkylating agent, in those cases where the carbonyl was protected, the alkylating step was followed by acidic hydrolysis (see legend to Scheme 1 for details).

Compound 16 was made by direct alkylation of 2 with 2-chloroacetaldehyde oxime ether; the required oxime ether 6 was made by condensation of chloroacetaldehyde with the corresponding alkoxy amine 5 (Scheme 2).¹⁰

Scheme 1. Reagents and conditions: (i) chloroacetone, DIPEA, CH₃CN, rt or methylvinylketone, toluene, rt or 3-chloropropiophenone, DIPEA, CH₃CN, 70 °C or chloroacetophenone, DIPEA, CH₃CN, rt; (ii) 5-chloro-2-pentanone ethylene ketal, DIPEA, CH₃CN, reflux or 2-(2-bromoethyl)-1,3-dioxolane, DIPEA, CH₃CN, 75 °C; (iii) HCl, dioxane, H₂O 50 °C; (iv) RCH₂ONH₂·HCl, NaOAc, EtOH, 70 °C.



Scheme 2. Reagents and conditions: (i) chloroacetaldehyde, NaOH, H₂O, rt; (ii) 2, DIPEA, CH₃CN, reflux.

The required alkoxy amines **5** were obtained by alkylation of acetophenone oxime **7** with an appropriate alkylating agent followed by acidic hydrolysis (Scheme 3).

The biological results for compounds 8–17, as shown in Table 1, indicate that the chain length between the piperazine-nitrogen and the morpholino-group does not have much effect on the affinity for the NK-1 receptor. A more noticeable effect is seen on the inositol turn-over assay where the shorter chain lengths have a stronger antagonistic effect. A shorter distance between the morpholino-group and the oxime ether functionality is favoured. This effect is even more striking in the gerbil foot-tapping assay (compounds 8, 10 and 12 versus 9 and 11), a model predictive of central NK-1 activity.

Whereas the spacer length has only a minor effect on the receptor affinity, a somewhat stronger effect is seen for the substituent in the spacer. A hydrogen-atom or methyl group is well tolerated; however, a phenyl group lowers the affinity and also reduces the antagonistic properties. Furthermore, the results from the gerbil

Scheme 3. Reagents and conditions: (i) Bu_4NBr , NaOH, toluene, H_2O , rt; (ii) HCl reflux.

Download English Version:

https://daneshyari.com/en/article/1379278

Download Persian Version:

https://daneshyari.com/article/1379278

Daneshyari.com