FISFVIFR

Contents lists available at ScienceDirect

Carbohydrate Polymers

journal homepage: www.elsevier.com/locate/carbpol

Sodium alginate-assisted exfoliation of MoS₂ and its reinforcement in polymer nanocomposites

Dandan Xuan, Yifeng Zhou*, Wangyan Nie, Pengpeng Chen*

College of Chemistry & Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Hefei 230601, China

ARTICLE INFO

Article history:
Received 28 June 2016
Received in revised form 10 August 2016
Accepted 16 August 2016
Available online 17 August 2016

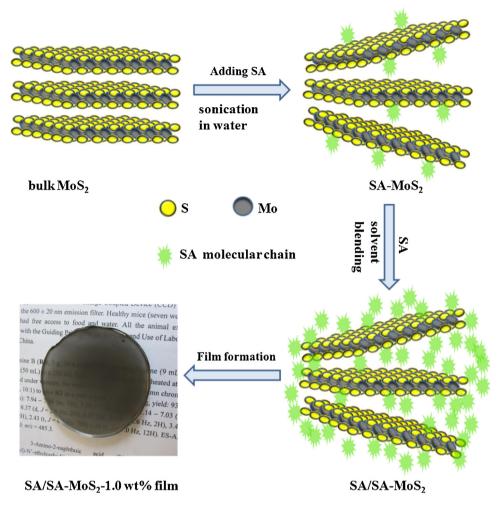
Keywords:
Molybdenum disulfide
Sodium alginate
Nanocomposites
Thermal and mechanical properties

ABSTRACT

In this work, molybdenum disulfide (MoS₂) nanosheets were facilely prepared by direct exfoliation of MoS₂ in aqueous media with the assistance of sodium alginate (SA). Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectra results showed that the raw MoS₂ was successfully exfoliated into few-layer MoS₂ nanosheets (SA-MoS₂). FTIR and thermal gravimetric analysis (TGA) investigations showed that the obtained MoS₂ nanosheets were modified by SA after exfoliation and improved dispersion in water were achieved. The obtained SA-MoS₂ nanosheets were employed to reinforce the water-soluble polymer SA. No obvious macroscopic phase separation could be found from the SA/SA-MoS₂ films. Dynamic mechanical analysis (DMA) results showed that almost 9 times enhancement for the storage modulus of SA was achieved with the incorporation of only 0.5 wt% of SA-MoS₂, and the thermal stability of SA was also found improved with the addition of SA-MoS₂ according to the thermal gravimetric analysis TGA results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction


Due to the excellent anisotropic physical properties, ultrathin structure, and quantum size effects (Guo, Duan, Zhou, & Zhu, 2014; Kisku & Swain, 2012; Layek & Nandi, 2013; Young, Kinloch, Gong, & Novoselov, 2012), graphene has been drawing great attentions to serve as nanofillers in polymer composites. However, the electrical conductivity of graphene based polymer nanocomposites restricts their use in some electrical and electronic applications such as transmission lines, power electronics and capacitors. Similar to graphene, MoS₂ has a layered structure that hexagonal Mo layers are sandwiched between two hexagonal S layers (Huang, Chen et al., 2013; Zhang, Wu, Guo, & Lou, 2012). The MoS₂ nanosheets have interesting optical and electrical properties (Coleman et al., 2011) which have been capitalized in many research fields such as photochemistry, materials science (Zhou, Liu, Wen, Hu, & Gui, 2014), nanoelectronics (Sanchez et al., 2006) and catalysis (Radisavljevic, Radenovic, Brivio, Giacometti, & Kis, 2011; Shi et al., 2012; Yang et al., 2013; Zhiyuan et al., 2011). Same to graphene, MoS₂ nanosheets also possess excellent mechanical properties and high storage modulus. But different

from graphene, the MoS₂ nanosheets are nonconductive which is quite beneficial as a reinforcer for polymer nanocomposites in some special fields. Recently, a general trend has emerged for using MoS₂ modified polymer, such as MoS₂/PVA nanocomposites (Jiang et al., 2014) and MoS₂/chitosan nanocomposites (Feng et al., 2014). The polymer nanocomposites prepared with MoS₂ showed enhanced mechanical properties in varying degrees compared to the neat polymers, suggesting the promising potential as a nanofiller of MoS₂ nanosheets. Importantly, those MoS₂ reinforced polymers preserved their electrical insulation well.

MoS₂ nanosheets can be prepared through several different ways such as mechanical exfoliation (Splendiani et al., 2010), chemical vapor deposition (CVD) on substrates (Jeon et al., 2015), chemical exfoliation through intercalation (Chou et al., 2013; Luo et al., 2014), etc. Mechanical exfoliation is an effective method to prepare few-layers MoS₂ nanosheets. Novoselov et al. used the method to prepare nanosheets from various bulk materials to single layer (Novoselov et al., 2005). However, the yield is low and the method is time consuming. CVD has been used to synthesize high quality MoS₂ nanosheets in a controllable manner with different compositions. Lee et al. used MoO₃ and S as the precursors to prepare MoS₂ nanosheets under the condition of heating (Lee et al., 2012). But the method is not easy to scale-up. Chemical exfoliation is a simple method to prepare few-layers MoS₂ nanosheets. The mostly used chemical exfoliation method involves lithium inter-

^{*} Corresponding authors.

E-mail addresses: yifengzhou@126.com (Y. Zhou), chenpp@ahu.edu.cn
P. Chen).

Scheme 1. Illustration of the preparation process of the $SA/SA-MoS_2$ nanocomposites.

calation using *n*-butyllithium (*n*-BuLi) as a lithiation agent, which was invented by Joensen (Ashori, 2014; Gee, Frindt, Joensen, & Morrison, 1986), etc. One disadvantage about this method is the lithium intercalation rate is low and often needs more than 40 h and a high temperature to prepare MoS₂ nanosheets (Ashori, 2014; Tang & Alavi, 2011).

Recently, the liquid-phase exfoliation of MoS₂ assisted with green polymer attracted many attentions. Because it not only can produce the well-stripped nanosheets, but also graft some hydrophilic polymer chains at the same time, which can facilitate introducing into many water soluble polymers and achieved homogeneously dispersion in them (O'Neill, Khan, & Coleman, 2012). For example, by taking alkali lignin as a surfactant, Lu et al. directly exfoliated MoS₂ into single-layer and few-layer nanosheets, which possessed abundant hydrophilic groups on its surface (Liu, Zhao et al., 2015; Liu, Zhou et al., 2015). SA is a natural polysaccharide derived from brown sea algae, which is a linear polyanionic copolymer composed of (1-4)-linked-D-mannuronic acid (M) and guluronic acid (G) residues (Pawar & Edgar, 2012; Yang, Xie, & He, 2011). As a hydrophilic biopolymer with -COOH and -OH in each unit, SA is favorable for its intercalation into MoS₂ layers. Besides, SA was demonstrated as a dispersing agent and stabilizer for graphene oxide in aqueous solution (Nie et al., 2015). Furthermore, SA possesses many advantages including sustainability, chemical flexibility, human and eco-friendliness. However, as a polymer material, neat SA displays some unsatisfactory properties such as weak mechanical strength, low thermal stability and loss of structural integrity, which limits its applications in many fields (Rani, Mishra, & Sen, 2013). Compositing with nanofillers was proved to be an efficient way to enhance SA (Wan, Chen, Xiong, Guo, & Luo, 2014).

In this article, hydrophilic polymer SA was employed to assisting exfoliates MoS_2 in aqueous media. Morphology and structure characterizations showed that the MoS_2 was successfully exfoliated and functionalized at the same time. Taking SA as a model water soluble polymer, the prepared SA- MoS_2 was employed to reinforce SA (Scheme 1). DMA results showed that the storage modulus of SA/SA- MoS_2 was almost 9 times higher compared to neat SA. The thermal stability of SA was found improved as well.

2. Experimental section

2.1. Materials

MoS₂ (99% purity) was purchased from Sigma-Aldrich Chemicals Inc (USA). Sodium alginate (SA) was purchased from Adamas-beta (China) and used without further purification.

2.2. Exfoliation of MoS₂

The preparation of the MoS_2 dispersion was described as follows: 1 g SA was dissolved in 100 mL deionized water at $50\,^{\circ}$ C in glass vial with stirring to prepare SA aqueous solution for 2 h. Then, $0.1\,\mathrm{g}$ MoS_2 powder was put into the solution upon ultra-

Download English Version:

https://daneshyari.com/en/article/1384565

Download Persian Version:

https://daneshyari.com/article/1384565

<u>Daneshyari.com</u>