FISEVIER

Contents lists available at ScienceDirect

Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

Note

A pyrenyl-appended triazole-based ribose as a fluorescent sensor for Hg^{2+} ion

Kuan-Hao Chen, Cheng-Yi Lu, Hsiu-Jung Cheng, Shau-Jiun Chen, Ching-Han Hu, An-Tai Wu*

Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan

ARTICLE INFO

Article history:
Received 7 March 2010
Received in revised form 6 September 2010
Accepted 9 September 2010
Available online 17 September 2010

Keywords: Chemosensor Ribose Fluorescence Pyrene

ABSTRACT

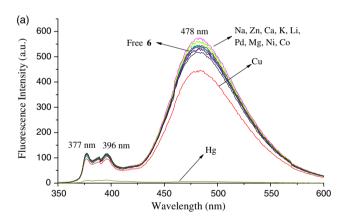
For the efficient detection of toxic trace metal ions, two pyrenyl-appended triazole-based D-ribose fluorescent chemosensors $\bf 6$ and $\bf 7$ were prepared and their fluoroionophoric properties toward transition metal ions were investigated. Chemosensors $\bf 6$ and $\bf 7$ exhibit highly selective recognition toward Hg^{2+} ion among a series of tested metal ions in $CH_2Cl_2/MeOH$ solution. The association constants of $\bf 6$ and $\bf 7$ are calculated to be $1.73\times10^5~M^{-1}$ and $4.44\times10^5~M^{-1}$, respectively. Both $\bf 6$ and $\bf 7$ formed complexes with the Hg^{2+} ion at a 1:1 ligand-to-metal ratio with a detection limit of $10-15~\mu M~Hg^{2+}$. Computational analysis demonstrated that the Hg^{2+} ion occupied the coordination center of $\bf 6$ with N^2 and N^3 atoms in two triazole groups, thus separating and distorting the two parallel pyrenes away from each other.

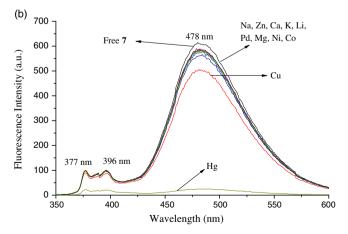
© 2010 Elsevier Ltd. All rights reserved.

The design and synthesis of new chemosensors for the efficient detection of trace metal ions are among the most important research topics in environmental chemistry and biology. In particular, mercury ion is a significant environmental pollutant that accumulates in plants, soil, and water. In the marine environment, mercury ion is converted by bacteria into methylmercury, a highly potent neurotoxin. Methylmercury is passed up the food chain and bioaccumulates in humans.^{2–4} Accordingly, it is imperative to develop analytical methods for the sensitive and selective detection of trace amounts of mercury ion.^{5,6}

Carbohydrate-based chemosensors are chiral entities with hydroxyl groups and oxygen atoms that form quite suitable cation binding sites. Thus, in the design of chemosensors, the incorporation of sugar molecules is a good strategy for capturing cations.^{7–9} Currently, there are very few sugar-based fluorescent chemosensors for selective detection of mercury ion described in the literature.¹⁰ A good chemosensor must also possess a selective and sensitive signaling mechanism. Recently, pyrene has emerged as one of the most effective functional groups for fluorescence signaling.^{11–15} In this study, we combined these two entities in a novel chemosensor by connection with triazole groups for metal ion screening studies because the triazole groups are lately recognized as potential metal ion binding site.^{15,16} The designed ribose-based pyrenyl-appended chemosensors **6** and **7** exhibit high selectivity and sensitivity for Hg²⁺ ion compared to other transition and heavy metal ions.

The synthesis of fluorescent sensors is outlined in Scheme 1. The 5-O-Ms-C-riboside 1 can be easily prepared from ribose in five steps. ¹⁷ The ester groups of 1 were hydrolyzed with NaOH to


produce the corresponding acid **2** in 70% yield. We used Steglich esterification to couple compound **2** with two different lengths of polyethylene glycol in the presence of DMAP and DCC to obtain **3** or **4** in 68% and 63% yields, respectively. Under microwave conditions, **3** or **4** was treated with 1-(propagyloxymethyl)pyrene **5** and PPh₃·CuBr as the catalyst in toluene at reflux to obtain compound **6** or **7** in 63% and 57% yields, respectively.


We first studied the optical properties of both 6 and 7 in CH₂Cl₂/ MeOH solution. On excitation at 343 nm, the maximum absorption wavelength of the pyrene in 6 and 7 displayed a strong excimer emission at 478 nm and a weak monomer emission at 395 nm (Fig. 1a and b), respectively. The relative ratio of excimer to monomer ($I_{\text{excimer}}/I_{\text{monomer}}$) bands for **6** and **7** is about 5–5.5 indicating that 6 and 7 have similar conformational rigidity. The chemosensing behavior of $\mathbf{6}$ (10 μ M) and $\mathbf{7}$ (15 μ M) was investigated by comparing their fluorescence intensities before and after addition of 10 equiv of the following 11 metal ions (as perchlorate salts): Li⁺, Na⁺, K⁺, Ca²⁺, Mg²⁺, Hg²⁺, Co²⁺, Ni²⁺, Cu²⁺, Pb²⁺, and Zn²⁺. The results indicated that the monomer and excimer emissions of 6 were strongly quenched only in the presence of the Hg²⁺ ion (Fig. 1a). This selective quenching by the Hg²⁺ ion was also observed for compound **7** (Fig. 1b). The quenching efficiency $(I - I_0/I_0 \times 100\%)$ for 6 and 7 observed at 478 nm was nearly 100% (Fig. 2); in contrast, the other metal ions caused comparatively small changes in fluorescence intensity.

In addition, Cd²⁺ is an important cation because, like Hg²⁺ it is also toxic. Therefore, we also performed the selectivity study on Cd²⁺. The results showed almost no effect on the fluorescence changes of **6** and **7** upon addition of Cd²⁺ (Fig. S14). Moreover, we tested whether the addition of excess metal ions would change the UV–vis spectra of both **6** and **7**. We found that the spectra of

^{*} Corresponding author. Tel.: +886 4 7232105 3542; fax: +886 4 7211 190. E-mail address: antai@cc.ncue.edu.tw (A.-T. Wu).

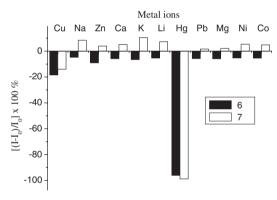

Scheme 1. Synthesis of chemosensors 6 and 7.

Figure 1. Fluorescence spectra of (a) **6** (10 μ M) and (b) **7** (15 μ M) in the presence of 10 equiv of various metal ions in CH₂Cl₂/MeOH (80:20, v/v); λ_{ex} = 344 nm.

both **6** (Fig. 3a) and **7** (Fig. 3b) were altered only in the presence of the Hg^{2+} ion. The presence of Hg^{2+} ion caused a small red shift that

Figure 2. Fluorescence intensity changes ($(I-I_0)/I_0 \times 100\%$) of **6** (10 μ M, dark bars) and **7** (15 μ M, light bars) in the presence of various metal ions in CH₂Cl₂/MeOH (80:20, v/v); $\lambda_{\rm ex}$ = 344 nm.

occurred at three λ_{max} absorption wavelengths (312, 328, and 344 nm). These red shifts are attributable to the deformation of electrical environments owing to Hg^{2+} complex formation. Additionally, the chain lengths of the ethylene ethers on **6** and **7** had no influence on the quenching of the excimer and monomer emissions upon the addition of the Hg^{2+} ion.

The declining excimer and monomer emissions that we found in both **6** and **7** were similar to the findings of Kim and coworkers.¹³ They showed that once Pb²⁺, Hg²⁺, and Cu²⁺ions were added into a pyrenyl-appended triazole-based calix[4]arene as a fluorescent sensor, a quenched fluorescence in both monomer and excimer emissions was observed. Recently, Chung and coworkers¹⁸ described a bis-triazoles-chained pyrenes fluorescent chemosensor that had dual-mode recognition for Pb²⁺ and Cd²⁺ ions. In comparison, our results showed both **6** and **7** were unimode Hg²⁺-selective fluorescent sensors. The differences could be attributed to the addition of the ribose-based moiety to the bis-triazoles-chained pyrenes.

Download English Version:

https://daneshyari.com/en/article/1384650

Download Persian Version:

https://daneshyari.com/article/1384650

<u>Daneshyari.com</u>