

Available online at www.sciencedirect.com

Carbohydrate Research 341 (2006) 246-252

Carbohydrate RESEARCH

Structural elucidation of fungal polysaccharides isolated from the cell wall of *Plectosphaerella cucumerina* and *Verticillium* spp.

Oussama Ahrazem,^{a,†} Alicia Prieto,^a María Inmaculada Giménez-Abián,^a Juan Antonio Leal,^{a,*} Jesús Jiménez-Barbero^a and Manuel Bernabé^b

^aCentro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain ^bInstituto de Química Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain

> Received 4 April 2005; accepted 27 October 2005 Available online 5 December 2005

Abstract—The structure of acidic fungal polysaccharides isolated from the cell wall of *Plectosphaerella cucumerina*, *Verticillium dahliae*, and *V. albo-atrum* has been investigated by chemical analysis, methylation analysis, and 1D and 2D 1 H and 13 C NMR spectroscopy. The polysaccharides have an idealized repeating block of the type:

linked to a small mannan core (<15%), where n = 13, m = 13, p = 5, and q = 8 for *P. cucumerina*, and n = 16, m = 16, p = 6, and q < 1 for both *Verticillium* species.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Fungi; Plectosphaerella; Verticillium; Polysaccharides; NMR Spectroscopy

1. Introduction

^{*} Corresponding author. Fax: +34 91 837 31 12; e-mail: aleal@cib. csic.es

[†]Present address: Escuela Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Avenida de los Reves Católicos, s/n, 28040 Madrid, Spain.

The alkali-extractable and water-soluble fungal polysaccharides (F1SS), which are minor components of the cell wall (2–8%), differ in composition and structure among genera and, in certain cases, among groups of species of a genus.¹ Polysaccharide moieties similar to that of the F1SS polysaccharides have been shown to occur in

^{0008-6215/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2005.10.021

glycoproteins.^{2,3} The complex carbohydrates of these molecules are antigenically relevant^{4–8} and serve different biological functions, one of the most important of which is its participation in cell–cell and/or cell–host recognition phenomena.⁹

The cosmopolitan fungus *Plectosphaerella cucumerina* can become a severe plant pathogen under appropriate conditions. Nevertheless, its systematics, as well as that of *Plectosporium tabacinum*, its anamorph, are problematic.^{10,11} Historically, *P. cucumerina* has been included in the Hypocreales^{12,13} but Uecker,¹¹ based on ascoma development, concluded that it should be placed in the Sordariales.

The polyphyletic genus *Verticillium* is the anamorph of several genera belonging to the Hypocreales.^{14,15}

Here we report on the novel structure of the polysaccharides F1SS of *P. cucumerina*, *V. dahliae*, and *V. alboatrum* and discuss the taxonomic placement of these species on the basis of their structures.

2. Results

The alkali-extracted water-soluble cell-wall polysaccharides (F1SS) amounted to 5–7% of the dry cell-wall material in the three species. They are composed of mannose (6%), galactose (60%), and glucose (26%) in *P. cucumerina*, as shown by gas–liquid chromatography (GLC), and mannose (14%), galactose (54%), and glucose (32%) in both species of *Verticillium*. In addition, 6-10% of uronic acids were detected by the carbazole test. Absolute configuration analysis showed the D configuration for all of the sugars.

In *P. cucumerina*, methylation analysis of the reduced polysaccharide gave the derivatives corresponding to terminal glucopyranose and galactopyranose, 6-O- and 2,6-di-O-substituted galactofuranose, 6-O-substituted glucopyranose, and 6-O-substituted mannopyranose, and 4-O-substituted glucopyranuronic acid (Table 1).

Methylation analyses were also performed on both species of *Verticillium*, giving similar components to those found in *P. cucumerina*, although traces of the derivative corresponding to terminal glucopyranuronic acid were identified (<1%), instead of that of 4-O-substituted GlcpA (Table 1).

Figure 1. ¹H NMR spectra (D_2O , 40 °C, 300 MHz) of alkali-extracted water-soluble cell-wall polysaccharides F1SS isolated from: (a) *V. dahliae*, (b) *V. albo-atrum*, and (c) *P. cucumerina*.

Figure 2. (a) ¹H NMR spectrum (D₂O, 40 °C, 500 MHz) and (b) ¹³C NMR spectrum (D₂O, 40 °C, 125 MHz) of F1SS polysaccharide isolated from *P. cucumerina.* The anomeric peaks in the first spectrum have been labeled A-G.

The ¹H NMR spectra of the polysaccharides in the acid form were very similar in the three species (Fig. 1). Accordingly, the polysaccharide from *P. cucumerina* was then selected for further studies.

The high-resolution ¹H NMR spectrum (Fig. 2a) contained at least three major (5.16, 5.06, and 4.43 ppm) and three minor anomeric signals (5.12, 5.04, and 4.41 ppm).

The ¹³C NMR spectrum (Fig. 2b) exhibited four major (107.1, 104.2, 99.0, and 98.9 ppm) and two minor

Table 1. Linkage types deduced from methylation analysis of F1SS polysaccharides

Linkage type	V. albo-atrum CECT 2693	V. dahliae CECT 2694	P. cucumerina CBS 137.33
$Glcp-(1 \rightarrow$	16.2	16.0	17.6
$GlcpA-(1 \rightarrow$	0.8	0.9	_
$Galp$ -(1 \rightarrow	22.7	20.6	22.3
\rightarrow 4)-GlcpA-(1 \rightarrow	_	_	8.3
$\rightarrow 6$)-Glcp-(1 \rightarrow	17.8	23.6	13.6
\rightarrow 6)-Galf-(1 \rightarrow	4.5	2.3	2.0
\rightarrow 2,6)-Galf-(1 \rightarrow	38.0	36.6	36.2

Download English Version:

https://daneshyari.com/en/article/1385978

Download Persian Version:

https://daneshyari.com/article/1385978

Daneshyari.com