FISEVIER

Contents lists available at ScienceDirect

Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

Note

Core oligosaccharide of *Escherichia coli* B—the structure required for bacteriophage T4 recognition

Marta Kaszowska*, Tomasz Niedziela, Anna Maciejewska, Jolanta Lukasiewicz, Wojciech Jachymek, Czeslaw Lugowski

Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, PL-53-114 Wroclaw, Poland

ARTICLE INFO

Article history: Received 27 February 2015 Received in revised form 27 April 2015 Accepted 30 April 2015 Available online 29 May 2015

Keywords: Escherichia coli B Core oligosaccharide glycine NMR MALDI-TOF ESI MS

ABSTRACT

The structure of *Escherichia coli* B strain PCM 1935 core oligosaccharide has been investigated by ¹H and ¹³C NMR spectroscopy, MALDI-TOF MS and ESI MSⁿ. It was concluded that the core oligosaccharide is a pentasaccharide with the following structure:

L-
$$\alpha$$
-D-Hep p

1

 \downarrow

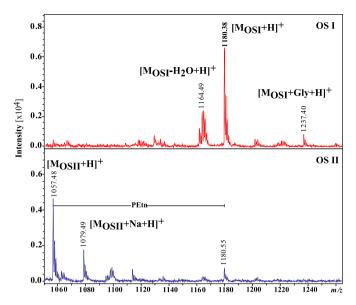
7

 α -D-Glc p -(1 \rightarrow 3)-L- α -D-Hep p -(1 \rightarrow 3)-L- α -D-Hep p -(1 \rightarrow 5)- α -Kdo p
 \downarrow
 Gly
 \downarrow

PPEtn

ESI MS/MS analysis revealed that the glycine (a minor component) is linked to the \rightarrow 3,7)-L- α -D-Hepp-(1 \rightarrow residue.

© 2015 Elsevier Ltd. All rights reserved.


Lipopolysaccharide (LPS) is the main surface antigen of Gramnegative bacteria. LPS consists of an O-specific polysaccharide, a core oligosaccharide and the lipid A, anchoring the molecule in outer membrane. The smooth type LPS (S-LPS) is composed of these three regions, whereas rough LPS (R-LPS) is devoid of the O-specific chain and thus structurally it is a lipooligosaccharide (LOS). Among Escherichia coli LPSs more than 170 different O-specific polysaccharides and five core types (R1-R4, K12) have been identified to date.¹ Bacteriophage T4 of the *Myoviridae* family is a ubiquitous microorganism found in the environment and in variety of living organisms. It has become a universal research model in microbiology to study the mechanisms of many biological processes, including bacteriophage infection. The main host of bacteriophage T4 is E. coli B^{2,3} and this is also one of the most extensively investigated laboratory strains of E. coli. E. coli B is widely used paradigm for the genetic and biological studies, including infections with bacteriophages T1-T7.4 Genome sequences of E. coli B strains

We now present studies of the core oligosaccharide identified for LOS of *E. coli* B strain PCM 1935, which is recognized by bacteriophage T4. The core oligosaccharide structure was investigated by ¹H and ¹³C NMR spectroscopy, as well as MALDI-TOF MS and ESI MSⁿ. It differs from the structure published by Prehm et al. ⁷ as it lacks one Glc residue, one Kdo residue and a phosphate group.

The *E. coli* B LOS was isolated by PCP (phenol/chlorophorm/petroleum) method. After mild acid hydrolysis of LOS, lipid A and two oligosaccharide fractions were obtained: OSI (yield 19.5%), and OSII (yield 22.4%). Both core oligosaccharide fractions were investigated by ¹H, ¹³C and ³¹P NMR spectroscopy, MALDI-TOF MS and ESI MS. As indicated by the NMR and MS data the difference between OSI and OSII was attributed to phosphorylethanolamine (PEtn) (Fig. 1; Table 1). The ¹H NMR spectra of the OSI and OSII fractions contained main signals for four anomeric protons, as well as signals characteristic for the deoxy protons from the Kdo residue. The ¹H–¹H

REL606 and BL21(DE3) have been determined. ⁵ *E. coli* B possesses a rough form of LPS (LOS). LOS of *E. coli* B is recognized by the adhesin located on a long tail fiber of bacteriophage T4. ⁶ Prehm et al. reported for the first time on the structure of the core oligosaccharide isolated from LOS of *E. coli* B. ⁷

^{*} Corresponding author. Tel.: +48 713709927; fax: +48 713371382. E-mail address: marta.kaszowska@iitd.pan.wroc.pl (M. Kaszowska).

Fig. 1. MALDI-TOF mass spectra of the core oligosaccharides OSI and OSII of *E. coli* B differing by the presence of phosphoethanolamine.

COSY, TOCSY with different mixing times, $^{1}H^{-13}C$ HSQC-DEPT spectra allowed the assignment of the signals for each residue in OSI (marked as uppercase letters below) (Fig. 2, Table 1). The ^{31}P NMR spectra indicated the presence of phosphate groups (P) and $^{1}H^{-31}P$ HMBC identified the substitution positions (Fig. 3).

The chemical shifts were compared with the previously published data⁸ and the $^3J_{\rm H,H}$ -values for the coupling between ring protons were considered for the identification of the sugar residues and their anomeric configuration. Residue **A** was assigned as the 5-substituted Kdo residue on the basis of characteristic deoxy proton signals at $\delta_{\rm H}$ 1.84 (H-3ax) and 2.19 ppm (H-3eq) and high chemical shift of the C-5 signal ($\delta_{\rm C}$ 73.1 ppm). Residue **B** with the H-1/C-1 signals at $\delta_{\rm H}/\delta_{\rm C}$ 5.11/99.8 ppm was recognized as the 3-substituted L-glycero- α -D-manno-Hepp residue on the basis of $^1{\rm H}$ and $^{13}{\rm C}$ chemical shift values, small vicinal couplings between H-1, H-2 and H-3, and relatively high chemical shift of the C-3 signal ($\delta_{\rm C}$ 77.3 ppm). Relative downfield chemical shift of the H-4/C-4 signals at $\delta_{\rm H}/\delta_{\rm C}$ 4.55/71.6 in OSI and at $\delta_{\rm H}/\delta_{\rm C}$ 4.38/70.0 ppm in OSII indicated the substitution by pyrophosphorylethanolamine (PPEtn) and

phosphate group, respectively. Residue **C** with the H-1/C-1 signals at $\delta_{\rm H}/\delta_{\rm C}$ 5.07/102.7 ppm was recognized as the 3,7-disubstituted L-glycero- α -D-manno-Hepp residue on the basis of the 1 H and 13 C chemical shifts, small vicinal couplings between H-1, H-2 and H-3, and relatively high chemical shifts of the C-3 ($\delta_{\rm C}$ 78.6 ppm) and C-7 ($\delta_{\rm C}$ 69.4 ppm). Residue **D** with the H-1/C-1 signals at $\delta_{\rm H}/\delta_{\rm C}$ 4.89/100.0 ppm was assigned as the terminal L-glycero- α -D-manno-Hepp residue on the basis of 1 H and 13 C chemical shifts and small vicinal couplings between H-1, H-2 and H-3. Residue **E** with the H-1/C-1 signals at $\delta_{\rm H}/\delta_{\rm C}$ 5.21/100.3 ppm was recognized as the terminal α -D-Glcp on the basis of the similarity of the 1 H and 13 C chemical shift values of the corresponding non-substituted monosaccharide.

The HSQC-DEPT spectrum revealed an additional negative CH₂ signal at $\delta_{\rm H}/\delta_{\rm C}$ 3.23/40.0 ppm correlated with another CH₂ signal at $\delta_{\rm H}/\delta_{\rm C}$ 4.14/62.4 ppm, indicating the presence of pyrophosphorylethanolamine (residue **F**). Additionally, the HSQC-DEPT spectrum revealed a negative CH₂ signal at $\delta_{\rm H}/\delta_{\rm C}$ 3.93/40.2 ppm, which correlated with a carbonyl carbon resonance at $\delta_{\rm C}$ 168.0 ppm in the HMBC spectrum, indicating the presence of glycine (residue **G**) (Fig. 2). The glycine location in the OSI was further confirmed by ESI MS/MS (Fig. 4), however the substitution position was not determined.

Each disaccharide element in the oligosaccharide fractions OSI and OSII was identified by NOESY and $^{1}H^{-13}C$ HMBC experiments (Table 1). The NOESY spectrum showed strong inter-residue NOE contacts between the *trans*-glycosidic protons: H-1 of **B**/H-5 of **A**, H-1 of **C**/H-3 of **B**, H-1 of **C**/H-3 of **B**, H-1 of **D**/H-7,7′ of **C**, H-1 of **E**/H-3 of **C**, H-1 The HMBC spectra showed cross-peaks between the anomeric proton and the carbon at the linkage position and further confirmed the structure of the core oligosaccharide of *E. coli* B (Chart 1; the asterisk indicates that the OSII fraction is devoid of the phosphorylethanolamine).

The OSI and OSII were analyzed by MALDI-TOF MS. Five sugar residues: three Hep, Hex, Kdo, and pyrophosphorylethanolamine give together a monoisotopic mass of 1179.29 Da ($\mathbf{M_{OSI}}$) for the OSI fraction. The MALDI-TOF mass spectrum showed main ions at m/z 1180.38 [$\mathbf{M_{OSI}}$ +H] $^+$, 1162.49 [$\mathbf{M_{OSI}}$ +H2O+H] $^+$ (Fig. 1A). Additionally, the ion at m/z 1237.40 Da [$\mathbf{M_{OSI}}$ +Gly+H] $^+$ corresponded to the OSI substituted with the glycine residue. MALDI-TOF mass spectrum of the OSII (Fig. 1A) showed the main ion at m/z 1057.48 [$\mathbf{M_{OSII}}$ +H] $^+$, corresponding to the OSII (OSI devoid of the phosphorylethanolamine (123.05 Da). The location of the glycine was determined by the positive ion mode ESI MS 2 . The ion at m/z 619.2 2 +

Table 1¹H and ¹³C NMR chemical shifts and the inter-residue NOEs and ³J_{H,C} connectivities from the anomeric atoms of the non-glycinated core oligosaccharides of *E. coli* B LOS. The chemical shift are given as averaged values for the residues in the same environment

Residue	H1/C1	H2/C2	H3 (H3 _{ax} ,H3 _{eq})/C3	H4/C4	H5/C5	H6,6'/C6	H7,7′/C7	H8, 8'/C8	Connectivity to		Inter-residue
	ppm								δ_{H}	δ_{C}	atom/residue
A			(1.84, 2.19)	4.07	4.10	3.77	3.63	3.46, 3.83	_		_
\rightarrow 5)- α -Kdo	nd	95.5	33.4	65.5	73.1	71.7	69.0	63.8			
В	5.11	3.96	4.04	4.55 ^b	4.14	4.04	3.65		4.10	73.1	H5, C5 of A
\rightarrow 3-L- α -D-Hepp-(\rightarrow ^a	99.8	70.9	77.3	71.6	71.3	68.6	62.9				
C	5.06	4.31	3.96	3.95	3.59	4.11	3.54, 3.70		4.04	77.3	H3, C3 of B
\rightarrow 3,7-L- α -D-He p -(\rightarrow	102.7	69.4	78.6	65.4	72.7	68.1	69.4				
D	4.89	3.88	3.79	3.79	3.53	3.97	3.59		3.54, 3.70	69.4	H7,7',C7 of C
L-α-D-Hep <i>p</i> -(→	100.0	70.0	70.5	66.1	71.3	68.7	63.1				
E	5.21	3.48	3.73	3.34	3.80	3.68,3.88			3.96	78.6	H3, C3 of C
α -D-Glc p -(\rightarrow	100.3	71.9	73.0	69.7	72.2	60.4					
F	4.14	3.23									
PPEtn	62.4	40.0									

Spectra were recorded for ²H₂O solution at 298 K.

nd—not detected.

^a This sugar residue is substituted with a pyrophosphorylethanolamine (>90%) in OSI and a phosphate group (~80%) in OSI in the 4-position. The ³¹P NMR chemical shifts are δ –10.85 and –11.56 ppm for the pyrophosphorylethanolamine and δ 0.71 ppm for the phosphate group, respectively.

^b The chemical shift values of the H-4/C-4 resonances in the OS II were $\delta_{\rm H}/\delta_{\rm C}$ 4.38/70.0 ppm.

Download English Version:

https://daneshyari.com/en/article/1387606

Download Persian Version:

https://daneshyari.com/article/1387606

<u>Daneshyari.com</u>