

Available online at www.sciencedirect.com

Carbohydrate RESEARCH

Carbohydrate Research 343 (2008) 1346–1358

Structural characterization of the acid-degraded secondary cell wall polymer of *Geobacillus stearothermophilus* PV72/p2

Bent O. Petersen,^a Margit Sára,^{b,} Christoph Mader,^b Harald F. Mayer,^b Uwe B. Sleytr,^b Martin Pabst,^c Michael Puchberger,^{c,†} Eberhard Krause,^d Andreas Hofinger,^c Jens Ø. Duus^a and Paul Kosma^{c,*}

^aDepartment of Chemistry, Carlsberg Laboratory, Gamle Carlsberg Vej 10, 2500 DK Valby, Denmark ^bCenter of Nanobiotechnology, University of Natural Resources and Applied Life Sciences, Gregor-Mendelstr. 33,

A-1180 Vienna, Austria

^cDepartment of Chemistry, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria ^dLeibniz-Institute of Molecular Pharmacology, Robert-Rössle-Str. 10, D-13125 Berlin, Germany

> Received 22 January 2008; received in revised form 18 March 2008; accepted 20 March 2008 Available online 30 March 2008

Abstract—The secondary cell wall polymer (SCWP) from *Geobacillus stearothermophilus* PV72/p2, which is involved in the anchoring of the surface-layer protein to the bacterial cell wall layer, is composed of 2-amino-2-deoxy- and 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-mannose, and 2-acetamido-2-deoxy-D-mannuronic acid. The primary structure of the acid-degraded poly-saccharide—liberated by HF-treatment from the cell wall—was determined by high-field NMR spectroscopy and mass spectrometry using N-acetylated and hydrolyzed polysaccharide derivatives as well as Smith-degradation. The polysaccharide was shown to consist of a tetrasaccharide repeating unit containing a pyruvic acid acetal at a side-chain 2-acetamido-2-deoxy- α -D-mannopyranosyl residue. Substoichiometric substitutions of the repeating unit were observed concerning the degree of N-acetyl-ation of glucosamine residues and the presence of side-chain linked 2-acetamido-2-deoxy- β -D-glucopyranosyl units:

(C) (D) (B)
[-4)-
$$\beta$$
-D-ManpNAcA-(1-3)- β -D-GlcpN(Ac)_{-0.3}-(1-6)- α -D-GlcpNAc-(1-]
3 4
1 1
(β -D-GlcpNAc)_{-0.3} (E) (S)-Pyr-4,6- α -D-ManpNAc (A)

© 2008 Elsevier Ltd. All rights reserved.

Keywords: Geobacillus; Secondary cell wall polymer; NMR spectroscopy; Mass spectrometry; Polysaccharide structure

1. Introduction

Crystalline bacterial cell surface layer (S-layer) proteins represent the outermost cell envelope component of many bacteria and archaea.^{1–3} S-layers completely cover the cell surface during all stages of growth and division

^{*} Corresponding author. Tel.: +43 1 36006 6055; fax: +43 1 36006 6059; e-mail: paul.kosma@boku.ac.at

^{*} Deceased May 2006.

[†]Present address: Institute of Material Sciences, TU Vienna, Getreidemarkt 9, A-1060 Vienna, Austria.

and they either exhibit oblique, square, or hexagonal lattice symmetry. Most S-layers are composed of single protein or glycoprotein species with molecular masses ranging from 40 to 200 kDa. The S-layer subunits are linked to each other by non-covalent forces. S-Layer proteins from gram-positive bacteria are bound to the rigid, peptidoglycan-containing layer via the so-called secondary cell wall polymers (SCWPs).^{4–20} S-Layer proteins from *Bacillaceae* frequently carry an S-layer homologous (SLH) domain on the N-terminal part.²¹

^{0008-6215/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2008.03.029

SLH-domains typically consist of three modules of about 55 amino acids from which 10 to 15 residues are conserved. Several studies indicated that SLHdomain carrying proteins bind to pyruvylated SCWPs.^{5,9–11,14,16,17} Detailed studies regarding the interaction between an SLH-domain and the corresponding SCWP were carried out with the S-layer protein SbsB and the corresponding SCWP of Geobacillus stearothermophilus PV72/p2.15 Surface plasmon resonance (SPR) spectroscopic measurements indicated the existence of three differently strong binding sites with low ($K_d = 2.6 \times 10^{-5}$ M), medium ($K_d = 6.1 \times 10^{-8}$ M), and high ($K_d = 6.7 \times 10^{-11}$ M) affinities. This feature was explained by heterogeneities always associated with naturally occurring heteropolysaccharides: although regarding the high affinity binding site, avidity effects resulting from the binding of SLH-domain dimers could not be completely excluded.¹⁵ The recognition mechanism between the SLH-domain of SbsB and the SCWP of G. stearothermophilus PV72/p2 was found to be highly specific, as the SLH-domain neither recognized the peptidoglycan, nor pyruvylated SCWPs of other organisms. Furthermore, not the N-acetyl groups from the amino sugars but the pyruvic acid residues played a crucial role in the binding process.^{15,17}

In previous studies, the structures of the aciddegraded and the native SCWP of *Bacillus sphaericus* CCM 2177 were elucidated by NMR spectroscopy analysis.^{10,22} Contrary to the results obtained with the Slayer protein SbsB, the three SLH-motifs of the S-layer protein SbpA were not sufficient for binding to the corresponding SCWP of *B. sphaericus* CCM 2177, and a 58-amino acid long SLH-like motif located just behind the third SLH-motif was required for reconstituting the functional, SCWP-binding domain.⁹

In the present study, the structure of the HF-treated SCWP of *G. stearothermophilus* PV72/p2 was analyzed with the tools of NMR spectroscopy and mass spectrometry in combination with N-acetylation, Smith-degradation, and hydrolytic removal of pyruvic acid acetal residues.

2. Results and discussion

2.1. Chemical characterization and modification of the SCWP of *G. stearothermophilus* PV72/p2

Previous results on the linkage of SCWP to the peptidoglycan revealed the presence of pyrophosphate or phosphodiester bridges from 2-acetamido-2-deoxy-D-glucose to O-6 of muramic acid being susceptible to HF-induced cleavage.²⁸ Treatment of the SCWP of *G. stearothermophilus* PV72/p2 with HF at 4 °C afforded a polysaccharide material **1**, which was purified by GPC and eluted as a single peak. After hydrolysis of the GPC-purified

Figure 1. MALDI-TOF mass spectrum of the HF-treated secondary cell wall polymer 1 from Geobacillus stearothermophilus PV72/p2.

Download English Version:

https://daneshyari.com/en/article/1388689

Download Persian Version:

https://daneshyari.com/article/1388689

Daneshyari.com