

Carbohydrate RESEARCH

Carbohydrate Research 342 (2007) 2511-2521

First example of 5/6-O-linked pseudosaccharides: synthesis of bicyclic nucleosides containing azido or extended carbohydrate moiety

Joy Krishna Maity,^a Subhranshu Mukherjee,^a Michael G. B. Drew,^b Basudeb Achari^a and Sukhendu B. Mandal^{a,*}

^aDivision of Chemistry, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India ^bDepartment of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK

> Received 2 July 2007; received in revised form 23 July 2007; accepted 19 August 2007 Available online 23 August 2007

Abstract—Treatment of the p-glucose-derived substrate 1 with sodium hydride in tetrahydrofuran provided 3,6-anhydro monosaccharide 2, along with the 5,6-ether linked pseudodisaccharide 3, and pseudotrisaccharide 4. However, reaction of 1 with sodium ethoxide in ethanol afforded 2 as the sole product, elaborated to the bicyclic azidonucleosides 9 and 16. Acetylated bicyclic nucleosides 17–19 with extended carbohydrate residues have been synthesized from 3.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Pseudosaccharides; Synthesis; Azido bicyclic nucleosides; Carbohydrate; D-Glucose

1. Introduction

Bicyclic nucleosides¹ are derived by the replacement of the natural furanose sugar moiety with a bicyclic ring structure. Such replacement results in the diminution of the conformational freedom of the nucleosides.² A plethora of conformationally restricted bicyclic nucleosides have been synthesized for potential antiviral, antitumor, and other biological activities. Bicyclic nucleosides have been encountered in natural sources too. Among them, the most notable are the griseolic acids³ (having furano-furan skeleton), which are known to inhibit the 3',5'-cyclic nucleotide phosphodiesterase. Other bicyclic nucleosides such as ezomycins, quantamycin, and malayamycins (all with furanopyran skeleton) are antibiotics having interesting properties.⁴ The common structural motif present in some of these products is an extended carbohydrate moiety. The fact that the location of such structural features in the nucleosides imparts various antibiotic properties encouraged researchers to take up

2. Results and discussion

2.1. Synthesis of pseudosaccharides 2–4 from 1

We initially treated the glucose-derived precursor 1^{10} with sodium hydride in tetrahydrofuran, hoping to

programs on the synthesis of conformationally restricted glycotriazole-tethered nucleoside/nucleotide analogues,⁵ which have not been adequately explored so far. Keeping this in mind, we took up the synthesis of glucose-derived bicyclic nucleosides with azido functionality at C-2' and C-5'. In the process, we could also synthesize the hitherto unknown 5,6-ether linked pseudosaccharides and characterize a representative member unequivocally through X-ray crystallographic structure determination. It is pertinent to mention here that a 5,4-ether linked disaccharide has been identified as a structural element of the exotoxin of Bacillus thuringiensis and synthesized by Prystaš and Šorm,6 while 6,6'-ether linked disaccharides have been synthesized by Ikegami's group⁷ and by Haines⁸ to establish the structure of a natural product⁹ having antidiabetic activity.

^{*}Corresponding author. Tel.: +91 33 2473 3491; fax: +91 33 24735197; e-mail: sbmandal@iicb.res.in

produce the fused bis-tetrahydrofuran (the skeleton present in furanodictines¹¹) analogue **2**. ¹² Interestingly, the reaction mixture yielded (Scheme 1), in addition to **2**, the hitherto unknown pseudodisaccharide **3** and pseudotrisaccharide **4** (both 5,6-ether linked). On the other hand, treatment of **1** with sodium ethoxide in ethanol furnished **2** as the sole product (in 76% yield). Previous workers^{6–8} used the reaction of an appropriate sugar alkoxide with a suitable sugar—iodide/—tosylate/—triflate to obtain 5,4- and 6,6'-ether linked disaccharides. The present transformation, however, differs in having an internal functional group migration, which precedes the coupling step.

Formation of products 2–4 was found to depend on the concentration of the starting material 1 (Table 1). As the concentration of 1 increases, the yields of 2 and 3 decrease with simultaneous increase in the yield of 4.

The occurrence of these products suggested that the nucleophilic attack of the C-6 hydroxyl group in 1 occurred in two different ways. Intramolecular attack on C-3 (bearing mesyl group) resulted in the formation of the cyclic product 2. On the other hand, an intramolecular transfer of the mesyl functionality from C-3 to C-6 through the nucleophilic attack of the C-6 hydroxyl group (or stepwise migration of the mesyl group via C-5) produced the non-isolable intermediate 5a, which could also lead to epoxide 5b (Fig. 1). Either of these intermediates upon reaction with the hydroxyl group

of 2 could have generated 3, which subsequently yielded 4 after reaction with another molecule of 5a or 5b. The possible formation of the C-5 epimer of 5b through the attack of C-6 OH on the C-5 mesylate could be ruled out from the structure of product 3.

The presence of signals for four methyl groups and two anomeric centers together with other expected signals in the ¹H and ¹³C NMR, and the location of a peak at m/z 427 (MNa)⁺ in the mass spectrum of 3 proved helpful for deducing the gross structure. Finally, the structure and relative stereochemistry were established from an X-ray analysis (Fig. 2), which showed that there are two molecules in the asymmetric unit with equivalent geometries. With 4, the location of the molecular ion peak m/z: 629 $(M+Na)^+$ in the mass spectrum coupled with the preliminary analysis of the NMR spectra suggested the coupling of another molecule of monoacetonide glucose. Almost all the NMR signals of 3 were repeated, pointing to the presence of this moiety in 4. Due to the close chemical shifts of virtually all proton and carbon signals assigned to the two monocyclic units, an unambiguous structure assignment was difficult. However, starting from the anomeric proton signals of the two furanoside units, analysis of the ¹H-¹H COSY spectrum revealed that the two H-3 signals resonated at 4.14 ppm. These were coupled to the two OH doublet signals located at δ 3.15 and δ 3.27, ruling out an ether linkage involving either of the hydroxyl groups. This

Scheme 1. One-pot generation of pseudosaccharides 2, 3, and 4 from 1.

Table 1. Concentration dependent formation of 2, 3, and 4 from 1

1 4 molar equiv. NaH, THF, 0 °C, 5 min, then rt, 12 h

1 g ^a (mmol)	THF (mL)	Concn (mM)	2 g ^a (%) ^b	3 g ^a (%) ^b	4 g ^a (%) ^b
0.25 (0.84)	250	3.36	0.068 (40)	0.108 (32)	_
2.0 (6.71)	75	89.5	0.474 (35)	0.758 (28)	0.122(3)
5.0 (16.8)	50	336.0	1.080 (32)	1.550 (23)	0.506 (5)

^a Amount taken/isolated.

^b Isolated yield.

Download English Version:

https://daneshyari.com/en/article/1389104

Download Persian Version:

https://daneshyari.com/article/1389104

<u>Daneshyari.com</u>