

Contents lists available at ScienceDirect

Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

Synthesis and conformational analysis of carbasugar bioisosteres of α -L-iduronic acid and its methyl glycoside

Elin Säwén, Mattias U. Roslund, Ian Cumpstey, Göran Widmalm *

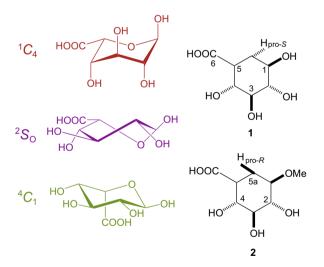
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

ARTICLE INFO

Article history: Received 18 December 2009 Received in revised form 15 February 2010 Accepted 1 March 2010 Available online 6 March 2010

Presented at the SMASH 2008 NMR Conference, Santa Fe, NM, USA, September 7–10, 2008

Keywords: Heparin Conformational equilibrium NMR Molecular modelling


ABSTRACT

The synthesis of two novel carbasugar analogues of α -L-iduronic acid is described in which the ring-oxygen is replaced by a methylene group. In analogy with the conformational equilibrium described for α -L-IdopA, the conformation of the carbasugars was investigated by 1 H and 13 C NMR spectroscopy. Hadamard transform NMR experiments were utilised for rapid acquisition of 1 H, 13 C-HSQC spectra and efficient measurements of heteronuclear long-range coupling constants. Analysis of 1 H NMR chemical shifts and $J_{\rm H,C}$ coupling constants extracted by a total-lineshape fitting procedure in conjunction with $J_{\rm H,C}$ coupling constants obtained by three different 2D NMR experiments, viz., 1 H, 13 C-HSQC-HECADE, J-HMBC and IPAP-HSQC-TOCSY-HT, as well as effective proton–proton distances from 1D 1 H, 1 H T-ROE and NOE experiments showed that the conformational equilibrium $^4C_1 = ^2S_5$ = 1C_4 is shifted towards 4C_1 as the predominant or exclusive conformation. These carbasugar bioisosteres of α -L-iduronic acid do not as monomers show the inherent flexibility that is anticipated to be necessary for biological activity.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Monosaccharides are usually assumed to have a rigid ring-conformation. This is a good approximation for hexapyranoses with up to one non-anomeric axial hydroxy group, which includes the majority of monosaccharide residues found in oligosaccharides of biological or biochemical importance. Iduronic acid, which is found α -(1 \rightarrow 4)-linked in nature in the glycosaminoglycans heparin, heparan sulfate and dermatan sulfate, is unusual among biologically relevant hexoses in that in its pyranose form it does not exclusively occupy the 4C_1 conformation, but rather is a flexible entity with more than one low-energy conformation accessible.¹ The relative population of the three low-energy conformations 4C_1 , 2S_0 and ${}^{1}C_{4}$ (Fig. 1) is dependent on the surrounding residues and sulfation.^{2,3} It has been proposed that the flexibility of iduronic acid is key to the strong binding of certain of these glycans to their receptors. One important interaction is the binding of a heparin pentaantithrombin.4 saccharide to Different conformationally constrained mimics of iduronic acid have been synthesised and incorporated into heparin sequences whose affinities for antithrombin indicate that the ²S₀ skew conformation is important for this binding event.^{5–7} The conformational preferences of iduronic acid and heparin-derived oligosaccharides have been studied by NMR spectroscopy, molecular modelling, molecular dynamics

Figure 1. Schematic of possible conformations for α -t-iduronic acid (left column) and the carbasugar analogues thereof synthesised herein (right column).

simulations, ab initio quantum mechanical computations and density functional theory methodology. $^{8{\rm -}16}$

Carbasugars (formerly pseudosugars) are carbohydrate-like molecules in which the ring-oxygen has been formally replaced by carbon. ^{17–19} They thus differ from natural glycosides in that pseudodisaccharides based on carbasugars will be hydrolytically

^{*} Corresponding author. E-mail address: gw@organ.su.se (G. Widmalm).

stable, an important factor when considering enzyme inhibitor design. Some *ido*-configured carbasugars have been synthesised before: both anomers of carbaidose have been described, as have some C1 ether pseudodisaccharides. Only two carbaiduronic acid derivatives have been synthesised, both as protected derivatives only, and both with the non-natural β -D-configuration. Recently, two novel carbasugars were isolated from *Streptomyces lincolnesis*.

We were interested as to whether carbaiduronic acid derivatives would have a conformational profile that would give them the potential to be useful mimics of iduronic acid, and we therefore undertook the synthesis of carbasugar 1 and its 1-0-methyl ether derivative 2 (Fig. 1) and investigated their ring-conformation(s), the results of which we report in this paper.

2. Results and discussion

2.1. Synthesis

Our synthesis started from the known cyclohexene derivative 3 that is prepared from L-sorbose in nine steps (Scheme 1).²⁹ Hydrogenation of the C=C double bond proceeded stereoselectively with addition of hydrogen from the same face as the free OH group to give the protected carbaidose 4 as the major product, separable by chromatography from the minor gluco compound 5 (ido:gluco; **4:5**; 4:1).³⁰ Selective cleavage of the primary benzyl ether from O6 in 4 was achieved by acetolysis with TFA and Ac₂O,³¹ followed by deacetylation with NaOMe in MeOH to give the known diol 6.30 Initial attempts at selective oxidation to iduronic acid 7 failed however: treatment of diol 6 with TEMPO and diacetoxyiodobenzene under two-phase conditions with CH₂Cl₂ and water gave clean formation of the C6 aldehyde,³² which was not transformed into the acid 7 even after several hours. Using a mixture of acetone and water as reaction solvent in the oxidation did not change the outcome. Nevertheless, the crude aldehyde could be oxidised to the carboxylic acid 7 with sodium chlorite.33 The secondary alcohol at C1 remained untouched during these two steps. Hydrogenolysis of the benzyl ethers gave the deprotected carbasugar 1.

In order to access the carbasugar analogue **2** of the methyl glycoside, OH1 of carbaidose **4** was methylated with methyl iodide to give the methyl ether **8**. The OH6 protection was selectively removed as described above to give the primary alcohol **9**. In this case, treatment with TEMPO and diacetoxybenzene in acetone/ water gave the carboxylic acid **10** directly, although a rather long reaction time (48 h) was needed for complete conversion. Debenzylation as described above gave the methyl glycoside analogue **2**.

2.2. Conformational analysis

The conformational analysis of carbasugar **1** and its 1-*O*-methyl ether derivative **2** (Fig. 1) is based on NMR spectroscopy and molecular modelling. ¹H and ¹³C NMR chemical shift assignments of the novel compounds used, besides standard 1D ¹H and ¹³C experiments, 2D ¹H, ¹H-TOCSY, ¹H, ¹³C-H2BC, ³⁴ ¹H, ¹³C-HMBC, and Hadamard transform (HT) ¹H, ¹³C-HSQC experiments. ³⁵ The ¹H, ¹³C-HSQC-HT experiment was used to rapidly and efficiently obtain the one-bond ¹H, ¹³C-correlations. Since the ¹³C resonances from both **1** and **2** were resolved in the 1D ¹³C NMR spectra and the compounds have, respectively, six and seven carbons that carry protons, a Hadamard-8 matrix was optimal for irradiation. In particular, as the 'all-plus' column of the Hadamard matrix is normally not used since it is not effective in reducing instrumental artefacts. ³⁶ The ¹H, ¹³C-HSQC-HT spectra of **1** are presented in Figure 2 and the ¹H and ¹³C NMR chemical shift assignments of the two compounds are compiled in Table 1. Analysis of the homo- and

Scheme 1. Reagents and conditions: (i) H₂, Pd (C), Et₃N, EtOAc; **4**, 78%; **5**, 19%; (ii) TFA, Ac₂O; then NaOMe, MeOH, 84%; (iii) TEMPO, Phl(OAc)₂, CH₂Cl₂, water; then DMSO, tBuOH, dimethoxybenzene, NaClO₂, NaH₂PO₄, 67%; (iv) Pd(OAc)₂, H₂, EtOH, AcOH, 96%; (v) NaH, Mel, THF, 92%; (vi) TFA, Ac₂O; then NaOMe, MeOH, 65%; (vii) TEMPO, Phl(OAc)₂, acetone, water, 64%; (viii) Pd(OAc)₂, H₂, MeOH, AcOH, 89%.

heteronuclear coupling constants (vide infra) showed that the conformational equilibria in the two compounds are very similar, and therefore the detailed conformational analysis is focussed on compound 1.

The conformational analysis is based on the following: ${}^3J_{\rm H,H}$ values, ${}^3J_{\rm H,C}$ values, effective ${}^1H, {}^1H$ -distances derived from cross-relaxation rates in 1D T-ROESY and NOESY experiments and 1H chemical shifts. The $J_{\rm H,H}$ coupling constants were extracted by a total-lineshape analysis 37 carried out with the PERCH NMR spin simulation software, which resulted in an excellent agreement between the experimental and the simulated 1H NMR spectra

Download English Version:

https://daneshyari.com/en/article/1389319

Download Persian Version:

https://daneshyari.com/article/1389319

<u>Daneshyari.com</u>