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a b s t r a c t

A simple mimetic of a heparan sulfate disaccharide sequence that binds to the growth factors FGF-1 and
FGF-2 was synthesized by coupling a 2-azido-2-deoxy-D-glucopyranosyl trichloroacetimidate donor with
a 1,6-anhydro-2-azido-2-deoxy-b-D-glucopyranose acceptor. Both the donor and acceptor were obtained
from a common intermediate readily obtained from D-glucal. Molecular docking calculations showed that
the predicted locations of the disaccharide sulfo groups in the binding site of FGF-1 and FGF-2 are similar
to the positions observed for co-crystallized heparin-derived oligosaccharides obtained from published
crystal structures.

� 2009 Elsevier Ltd. All rights reserved.

The fibroblast growth factors FGF-1 and FGF-2 are proteins that
play important roles in tumor angiogenesis.1 They initiate this pro-
cess by binding with their receptors (FGFRs) and heparan sulfate
(HS) to form a ternary complex which leads to receptor dimeriza-
tion/activation and subsequent cell signaling.2 Inhibiting the for-
mation of the HS–FGF–FGFR complex by antagonizing HS–FGF
binding with HS mimetics is thus a viable strategy for antiangio-
genic therapies.3–5

Various groups have reported the synthesis of HS and HS-like
oligosaccharides designed to interact with FGF-1 or FGF-2.6–8

These studies have provided valuable information about the struc-
tural requirements for oligosaccharide-FGF binding and activation,
however, the syntheses of such oligosaccharides are difficult and
laborious. This has lead to the pursuit of less synthetically chal-
lenging oligosaccharide mimetics as FGF antagonists.9–12 As part
of a program aimed at developing antiangiogenic compounds, we
recently described12 the preparation of simple disaccharides such
as 2 and 3 which mimic the HS disaccharide GlcN(2S, 6S)-IdoA(2S)
(1, Fig. 1), which has been postulated from X-ray crystallographic
analyses as a minimal heparin/HS consensus sequence for FGF
binding.13 As well as maintaining the a-(1?4) linkage between
the two monosaccharide units and the spatial orientation of the

two key sulfo groups [GlcN(2S) and IdoA(2S)], the compounds were
designed to mimic the conformational flexibility14,15 of the IdoA
residue. Docking calculations showed that the predicted locations
of disaccharide sulfo groups in the binding site of FGF-1 were con-
sistent with the positions observed for co-crystallized heparin-
derived oligosaccharides. Docking scores correlated with
experimental Kd values (22 lM to 1.4 mM) obtained from binding
assays.12 The docking score for a model HS disaccharide binding to
FGF-1 was similar.12

In crystal structures of heparin oligosaccharides bound to FGF,
IdoA is found in the 1C4 conformation when bound only to the pro-
tein16,17 or in a skew-boat (2SO) conformation when part of a ternary
complex.18,19 NMR studies also indicate that FGF-1 can bind both
conformations of IdoA in a bioactive hexasaccharide.20 These obser-
vations led us to consider the synthesis of simple disaccharides in
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Figure 1. Structures of the GlcN(2S, 6S)-IdoA(2S) disaccharide sequence 1, which
represents a minimal consensus sequence for FGF–HS binding,13 and two conform-
ationally flexible mimetics 2 and 3.12
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which the IdoA mimic is locked in the 1C4 conformation. A similar ap-
proach has been successfully used to probe the active conformations
of the ATIII-binding heparin pentasaccharide.21,22

It has been demonstrated that an O-sulfo group can substitute
for an N-sulfo group in a heparin oligosaccharide without loss of
binding affinity.23 The known 1,6-anhydro-2-azido-2-deoxy-b-D-
glucopyranose 8 was thus identified as a suitable IdoA mimic pre-
cursor because it is locked in the required 1C4 conformation, can be
selectively sulfonated at the C-2 position and is readily available in
four steps from D-glucal (4) via intermediates 5–7 (Fig. 2).24 The
precursor to 8 in this sequence of transformations can, in fact, be
easily converted, via intermediates 9–11, into useful glycosyl do-
nors such as the imidate 12 for use in the synthesis of heparin/
HS oligosaccharides.24–26 It was therefore decided to prepare both
8 and 12 and use them to synthesize a disaccharide (17) with the
desired features.

Following literature precedent,27 TBDMSOTf was selected as the
promoter for the glycosylation of the alcohol 8 with the imidate 12.
The reaction proceeded well in dichloromethane at �20 �C; how-
ever, a chromatographically inseparable mixture of anomers re-
sulted (a/b = 3.8:1). The product was thus converted into the
tribenzoate via Zémplen deacetylation followed by benzoylation
with benzoyl chloride and pyridine, and the desired a-linked disac-
charide 13 was isolated by flash chromatography in good overall
yield (46%, three steps, Scheme 1), along with 12% of the b-linked
disaccharide 13b. The azide groups of 13 were then reduced via
transfer hydrogenation with ammonium formate over Pd(OH)2 cat-

alyst and the resulting diamine 14 was sulfonated with SO3�tri-
methylamine complex and debenzoylated (1 M NaOH) to give
the benzyl ether 16 in moderate overall yield (28%, three steps).
Hydrogenolysis over Pd(OH)2 at 50 psi then furnished the target
disaccharide 17 in excellent yield (98%).

Molecular docking calculations were performed using the GLIDE

program28 to examine the binding modes of 16 and 17 with FGF-
1 and FGF-2. Compound 16 was examined in order to probe the ef-
fects of an extra hydrophobic group on FGF binding as it has been
shown that some heparin derivatives with lipophilic modifications
can bind to FGF-1 with similar or greater affinity than unmodified
heparin.29,30 The poses of 16 and 17 with the best GlideScores for
binding to FGF-1 and FGF-2 are shown in Figure 3. Also shown
are the van der Waals surfaces of the central sulfo groups of cocrys-
tallized, heparin-derived hexa- and tetrasaccharide ligands from
the crystal structures (pdb accession codes 2AXM16 for FGF-1 and
1BFB17 for FGF-2, respectively).

The preferred mode of binding of 16 and 17 to FGF-1 in Figure
3a shows congruence between the ligand sulfo groups with those
observed crystallographically. The FGF-2 binding mode of 16,
shown in Figure 3b, also shows the same congruence; however,
the preferred mode for 17, involves ionic hydrogen bonding inter-
actions with the positively charged residues LYS130 and LYS120 of
FGF-2. These residues are not involved in binding to the cocrystal-
lized heparin tetrasaccharide fragment, although their proximity to
the binding site region and their inherent flexibility suggests that
their involvement in ligand binding is reasonable. In the absence
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Figure 2. The structures of the glycosyl acceptor and glycosyl donor and their intermediates used in this study.
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Scheme 1. Reagents and conditions: (a) TBDMSOTf, CH2Cl2, �20 �C; (b) (i) NaOMe, MeOH, (ii) BzCl, pyridine, 46%, three steps; (c) Pd(OH)2, NH4HCO2, EtOAc–MeOH, 58%; (d)
SO3�Me3N, DMF, 60 �C; (e) 1 M NaOH, 28%, three steps; (f) H2, Pd(OH)2, 98%.
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