

Available online at www.sciencedirect.com

Carbohydrate RESEARCH

Carbohydrate Research 342 (2007) 1378-1381

Note

A pseudoaminic acid-containing O-specific polysaccharide from a marine bacterium *Cellulophaga fucicola*

Andrei V. Perepelov,^a Alexander S. Shashkov,^a Svetlana V. Tomshich,^{b,*} Nadezhda A. Komandrova^b and Ol'ga I. Nedashkovskaya^b

^aN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation ^bPacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russian Federation

> Received 2 March 2007; received in revised form 2 April 2007; accepted 4 April 2007 Available online 14 April 2007

Abstract—The O-polysaccharide was isolated from the lipopolysaccharide of *Cellulophaga fucicola* and studied by chemical analyses along with ¹H and ¹³C NMR spectroscopy. The following new structure of the O-polysaccharide of *C. fucicola* containing 5,7-diacet-amido-3,5,7,9-tetradeoxy-L-*glycero-L-manno*-non-2-ulosonic acid residue (pseudoaminic acid, Psep) was elucidated as the following:

 \rightarrow 4)- β -D-Galp-(1 \rightarrow 4)- β -D-Glcp-(1 \rightarrow 4)- β -Psep-(2 \rightarrow

© 2007 Elsevier Ltd. All rights reserved.

Keywords: O-specific polysaccharide; Cellulophaga fucicola; Bacterial polysaccharide structure; Marine bacterium

The genus *Cellulophaga* belongs to the family Flavobacteriaceae of the phylum Bacteroidetes. It was created by Johansen et al.¹ to accommodate the heterotrophic aerobic Gram-negative yellow/orange pigmented gliding and agarolytic bacteria of marine origin. Currently this genus comprises five species: *Cellulophaga algicola*, *Cellulophaga baltica*, *Cellulophaga fucicola*, *Cellulophaga lytica*, and *Cellulophaga pacifica*.² Data on the lipopolysaccharide structure of *Cellulophaga* were reported only for *C. baltica*.³

The O-specific polysaccharide (OPS) of *C. fucicola* was obtained by mild acid degradation of the lipopolysaccharide (LPS) isolated from dried bacterial cells by the phenol-water procedure. Degradation of the LPS with sodium acetate buffer (pH 4.5) resulted in a high-molecular weight polysaccharide (OPS-I) and a low-molecularweight polymer (OPS-II). Sugar analysis by GLC of the alditol acetates derived after full acid hydrolysis of the OPS-I revealed Gal and Glc in the ratios \sim 1:1. GLC analysis of the acetylated (*S*)-2-octyl glycosides demonstrated the D configuration of both monosaccharides.

The ¹³C NMR spectrum of the OPS-I showed, inter alia, signals for three anomeric carbon atoms at δ 102.6, 102.8 (quaternary carbon; data from the DEPT experiment) and 104.2, two nitrogen-bearing carbon atoms of amino sugar(s) at δ 47.2 and 54.7, two CH₂OH groups at δ 61.3 and 62.2, one C–CH₂–C group at δ 36.4, two *N*-acetyl groups at δ 23.2 and 23.3 (both CH₃), one CH₃–C group at δ 17.6, and three CO groups at δ 173.2, 174.8, and 176.0. The ¹³C NMR spectrum of the OPS-II (Fig. 1) contained also a set of minor signals belonging to terminal residues (see below).

Four signals were observed in a low-field region of the ¹H NMR spectrum of the OPS-I at δ 4.34–4.64, which included only two signals for anomeric protons (δ 4.45 and 4.64, both doublets, $J_{1,2}$ 8 Hz); the other

^{*} Corresponding author. Fax: +7 4232 314050; e-mail: tomsh@piboc. dvo.ru

^{0008-6215/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2007.04.001

Figure 1. ¹³C NMR spectrum of the low-molecular-weight fraction of the OPS-II of *C. fucicola.* Arabic numerals refer to the carbons in the sugar residues denoted as described in Table 1.

two signals at δ 4.34 and 4.52 were shown to belong to nonanomeric protons (see below). A high-field region of the spectrum contained two signals for *N*-acetyl groups at δ 1.94 and 2.00, one doublet (*J* 6 Hz) for a CH₃ group, and two one-proton signals at δ 2.67 (double doublets, *J* 5 and 13 Hz) and δ 1.77 (triplet, *J* 13 Hz).

The ¹H NMR spectrum of the OPS-I was assigned using 2D ¹H, ¹H COSY, TOCSY, and ROESY experiments (Table 1). The analysis of the correlations in the 2D spectra showed the presence in the repeating unit of spin systems for β -Galp (**A**), β -Glcp (**B**) and a 5,7-diacylamido-3,5,7,9-tetradeoxynon-2-ulosonic acid (**C**). The last sugar residue was identified as 5,7-diacetylamido-3,5,7,9-tetradeoxy- β -L-glycero-L-manno-non-2ulosonic acid (β -pseudaminic acid, β -Pse) on the basis of the following data:⁴

- (i) The ¹³C NMR spectrum contained signals characteristic for C-1 (δ 173.2), C-2 (δ 102.8), C-3 (δ 36.4), C-5, C-7 (δ 47.2, 54.7), and C-9 (δ 17.6) of the 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acids.
- (ii) The positions of H-5 and H-7 (δ 4.34 and 4.02, correspondingly) in the ¹H NMR spectrum were typical of protons at N-acylated carbons. The presence of only two *N*-acetyl groups in the repeating unit showed that the carbons C-5 and C-7 were N-acetylated.
- (iii) A large coupling constant $(J_{H-3ax,H-4} \ 13 \ Hz)$ indicated an axial position for H-4, small coupling constants $J_{H-4,H-5}$ and $J_{H-5,H-6}$ (4 and 2 Hz, correspondingly) displayed an equatorial position for H-5, and coupling constants $J_{H-6,H-7}$ (11 Hz) and $J_{H-7,H-8}$ (3 Hz) were characteristic for L-glycero-L-manno isomer of the 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acids.
- (iv) A large difference in the chemical shifts of H-3e and H-3a (0.9 ppm) was typical of the ulosonic acids with the axial position of the COOH group, that is the β -anomeric configuration of the pseud-aminic acid residue.

A 2D ¹H,¹³C HSQC experiment was applied for the assignment of the ¹³C NMR spectrum of the OPS-I (Table 1). Significant downfield displacement of the signals for C-4 of all sugar residues (**A**, **B**, and **C**), as

Table 1. ¹H and ¹³C NMR data of the OPS-I and OPS-II of the OPS of *C. fucicola* (δ , ppm)^a

Sugar residue		1	2	3	4	5	6 (6a,6b)	7	8	9
OPS-I										
\rightarrow 4)- β -D-Gal p -(1 \rightarrow A	$^{1}\mathrm{H}$	4.45	3.57	3.66	4.52	3.71	3.80; 3.98			
	¹³ C	104.2	72.1	73.1	73.7	76.7	61.3			
\rightarrow 4)- β -D-Glc <i>p</i> -(1 \rightarrow B	$^{1}\mathrm{H}$	4.64	3.23	3.65	3.62	3.61	3.66; 3.70			
	¹³ C	102.6	73.9	75.3	79.5	76.1	62.2			
\rightarrow 4)- β -Psep-(2 \rightarrow C	$^{1}\mathrm{H}$			1.77 (ax)	4.06	4.34	3.73	4.02	4.15	1.16
	¹³ C	173.2	102.8	36.4	76.5	47.2	74.8	54.7	69.4	17.6
β -D-Gal <i>p</i> -(1→ tA (from OPS-II)	$^{1}\mathrm{H}$	n.d	3.53	3.66	3.93	n.d	n.d			
	¹³ C	n.d	72.2	73.7	69.8	n.d	n.d			
\rightarrow 4)- α -Psep tC (from OPS-II)	$^{1}\mathrm{H}$			1.91 (ax) 2.10 (eq)	4.34	4.40	4.03	4.16	4.12	1.10
	¹³ C	n.d	n.d	35.9	75.7	48.0	71.2	54.1	68.0	16.5

^a The chemical shifts for the *N*-acetyl groups are δ_H 1.94 and 2.00; δ_C 23.2, 23.3 (both Me), and 174.8, 176.0 (2 CO).

Download English Version:

https://daneshyari.com/en/article/1389851

Download Persian Version:

https://daneshyari.com/article/1389851

Daneshyari.com