

Available online at www.sciencedirect.com

Carbohydrate Research 340 (2005) 2236-2244

Carbohydrate RESEARCH

One-pot α -glycosylation pathway via the generation in situ of α -glycopyranosyl imidates in N,N-dimethylformamide

Yuko Shingu, Akira Miyachi, Yoshiko Miura, Kazukiyo Kobayashi and Yoshihiro Nishida*

Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furou-cho, Chikusa-ku, Nagoya 464-8603, Japan

> Received 18 May 2005; accepted 13 July 2005 Available online 10 August 2005

Abstract—Divergent pathways are disclosed in the activation of 2-O-benzyl-1-hydroxy sugars by a reagent combination of CBr₄ and Ph₃P, all of which afford one-pot α -glycosylation methods. When this reagent is used in CH₂Cl₂, the 1-hydroxy sugar is converted to the α -glycosyl bromide in a conventional way and leads to the one-pot α -glycosylation method based on a halide ion-catalytic mechanism. In either DMF or a mixture of DMF and CHCl₃, however, alternative α -glycosyl species are generated. From the ¹H and ¹³C NMR study of the products, as well as the reactions using Vilsmeier reagents $[(CH_3)_2N^+=CHX]X^-$ (X = Br and Cl), these were identified as cationic α -glycopyranosyl imidates having either Br⁻ or Cl⁻ counter ion. The cationic α -glycosyl imidate (Br⁻), derived specifically in the presence of DMF, is more reactive than the α -glycosyl bromide and thus is responsible for the accelerated one-pot α -glycosylation. The one-pot α -glycosylation methodology performed in DMF was assessed also with different types of acceptor substrates including tertiary alcohols and an anomeric mixture of 1-OH sugars.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: α-Glycoside epitopes; Imidates; Solvent effects; Glycosylation; Trehalose; Glycolipids

1. Introduction

The development of practical α-glycosylation reactions is one of the meaningful challenges in organic chemistry.¹ This is mainly because a large part of mammalian oligosaccharides carry the corresponding α -glycoside epitope such as α -L-fucopyranoside and α -D-galactopyranoside in Lewis^X and globosyl antigens, respectively.² Also for the developing glycosylation methodologies, such as those based on semi-automatic,³ solid-phase,⁴ fluorous,⁵ and modular syntheses,⁶ simple and practical α -glycosylation reactions are essential. Among the popular α -glycosylation reactions hitherto reported,⁷ the halide-ion catalytic α -glycosylation reaction established by Lemieux and his co-workers⁸ seems to provide one of the most definitive pathways. A typical reaction utilizes a 2-O-benzyl- α -glycopyranosyl bromide as the glycosyl donor and N-tetraethylammonium bromide (Et₄N⁺Br⁻) as the catalyst. The α -glycosylation involves an in situ anomerization of the donor in the presence of the catalyst as the key step to give the β -glycosyl bromide in equilibrium. The β -species is more reactive than the α glycosyl bromide, and therefore, it is able to serve as an actual donor in the α -glycosylation reaction. Moreover, it is notable from a practical viewpoint that this methodology requires none of the heavy metals and strong Lewis acids often seen in this type of reaction.

Also in our synthetic studies on the cell-membrane glycolipids (GGPLs)⁹ of Mycoplasma fermentans,¹⁰ we have applied the halide-ion catalytic method effectively. This method can be carried out under neutral conditions and is applicable to α -glycosylation with chiral epoxy alcohols [(S)- and (R)-glycidols] required for constructing the α -glycosyl-sn-glycerol skeleton. Along these lines, we have attempted to make the overall synthetic

^{*}Corresponding author. Tel.: +81 52 789 2553; fax: +81 52 789 2528; e-mail: nishida@mol.nagoya-u.ac.jp

^{0008-6215/\$ -} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2005.07.020

process simpler. In preceding papers,^{11,12} we reported that the halide-ion catalytic α -glycosylation reaction could be conducted in a one-pot manner starting from a 2-O-benzyl-1-hydroxy sugar. For the one-pot α-glycosylation, the reagent combination of CBr₄ and Ph₃P, called the Appel-Lee reagent¹³⁻¹⁵ in this paper, plays multiple roles such as conversion of the 1-hydroxy sugar into an α -glycosyl bromide, in situ anomerization, and dehydration of the reaction system. More recently, we found that an alternative α-glycosyl species was derived when the Appel-Lee reagent was used in DMF for the activation of the 1-hydroxy sugar.¹⁶ The α -glycosyl species is labile to water and any isolation process, giving a mixture of the known α -glycosyl bromide and 1-hydroxy sugar. Moreover, the subsequent one-pot α -glycosylation was accelerated in comparison with the reactions conducted in CH_2Cl_2 . These results have suggested that there may be an alternative α -glycosylation pathway in which the reactive α -glycosyl species serve as the glycosyl donor. In the present study, we examined the activation of the 1-hydroxy sugar by the Appel-Lee reagent in more detail, as well as the structure and possible role of the α -glycosyl species in the one-pot α -glycosylation conducted in DMF.

2. Results and discussion

2.1. Divergent activation pathways of a 2-O-benzyl-1hydroxy sugar by the Appel-Lee reagent

The combination of CBr₄ and Ph₃P used in CH₂Cl₂ or CHCl₃ converts 6-*O*-acetyl-2,3,4-tri-*O*-benzyl- α -D-glucopyranose (1) to the α -glycosyl bromide (α -2-Br, Fig. 1a) giving Ph₃P=O as a side product.^{11,12} A similar conversion was reported also by Khatuntseva et al.¹⁵ When this reagent was used in DMF- d_7 , an alternative α -glycopyranosyl species α -2-X was derived (Fig. 1b). This species was highly sensitive to water and intolerable to isolation processes, being decomposed simultaneously to a mixture of α -2-Br and 1. In a solvent mixture of 1:1 DMF- d_7 and CDCl₃, a third α -glycosyl species α -2-Y was derived (Fig. 1c), which is obviously different from the 2-*O*-benzyl- α -glycosyl chloride (α -2-Cl) reported in the literature.¹⁷

In ¹H NMR spectroscopy, the unknown α -glycosyl species (α -2-X and α -2-Y) gave H-1 signals at a remarkably low field (δ 7.12 and δ 6.72 ppm) (Table 1). The ¹H chemical shifts are unusual for the D-hexopyranosyl ⁴C₁ (ring) conformation. This indicates that these products carry a highly electron-withdrawing group at the anomeric position. From their ¹H and ¹³C NMR data and chemical properties we have observed, we assigned them tentatively as cationic α -glycopyranosyl imidates, possessing bromide and chloride counter ions, respectively (Scheme 1).

Figure 1. ¹H NMR spectra (500 MHz) of a mixture of 1 and (a) Appel–Lee reagent in CDCl₃, (b) Appel–Lee reagent in DMF- d_7 , (c) Appel–Lee reagent in a mixture of 1:1 DMF- d_7 and CDCl₃, (d) Vilsmeier reagent (Br⁻-type) in DMF- d_7 solution. An asterisk (*) denotes the signal of unidentified non-sugar products.

The assigned imidate structure is a kind of Vilsmeier– Haack intermediate having $[(CH_3)_2N^+=CH-OR]X^-$ as the general structure.¹⁸ This intermediate is derived in reactions between an alkyl alcohol (R-OH) and a Vilsmeier reagent $[(CH_3)_2N^+=CHX]X^-$ (X = Cl or Br) on the way to forming alkyl halides (R-X).¹⁹ Sugar OH groups are also known to give these intermediates including the anomeric imidate of 2,3:4,5-di-*O*-isopropylidene-D-mannofuranosyl imidates (Cl⁻ and *p*-TsO⁻ salts) derived with phosgene in DMF.²⁰

To confirm the structures of α -2-X and α -2-X, we treated 1 with each of the bromide and the chloride types of Vilsmeier reagents (Aldrich). ¹H and ¹³C NMR spectra of the main products accorded with the products derived with the Appel–Lee reagent. That is, the Br⁻ type of Vilsmeier reagent afforded α -2-X exclusively in DMF- d_7 (Fig. 1d), while it gave α -2-Br in CDCl₃. The Cl⁻ type of reagent gave α -2-Y in DMF- d_7 and α -2-Cl in CDCl₃. This means that the Appel–Lee reagents to afford the cationic

Download English Version:

https://daneshyari.com/en/article/1390012

Download Persian Version:

https://daneshyari.com/article/1390012

Daneshyari.com