

Carbohydrate Research 341 (2006) 2901–2911

Carbohydrate RESEARCH

Synthesis of *Staphylococcus aureus* lipoteichoic acid derivatives for determining the minimal structural requirements for cytokine induction

Ignacio Figueroa-Perez,^a Andreas Stadelmaier,^a Susanne Deininger,^b Sonja von Aulock,^b Thomas Hartung^b and Richard R. Schmidt^{a,*}

^a Fachbereich Chemie, Universität Konstanz, Fach M 725, D-78457 Konstanz, Germany ^b Fachbereich Biologie, Universität Konstanz, D-78457 Konstanz, Germany

> Received 24 August 2006; accepted 3 October 2006 Available online 10 October 2006

Abstract—For the investigation of the minimal structural requirements for cytokine induction, *Staphylococcus aureus* lipoteichoic acid derivatives with two, three, four, and five glycerophosphate backbone moieties, carrying each a D-alanyl residue, were needed. Based on two different glycerophosphate building blocks and 6b-O-phosphitylated gentiobiosyl diacylglycerol the desired target molecules (compounds 1–4) could be readily obtained and provided for biological studies.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Bacteria; Gram-positive; Lipoteichoic acid; Synthesis; Modifications

1. Introduction

During infection, the recognition of conserved bacterial structures called pathogen-associated molecular patterns occurs via receptor recognition on immune cells and leads to the activation of the innate immune system resulting in the release of a variety of cytokines. Lipopolysaccharides (LPS) have been known as the most important conserved bacterial structures of Gram-negative bacteria inducing cytokine release for more than 50 years. Immune recognition takes place by the binding of LPS to the toll-like receptor 4 (TLR4) involving also other co-factors. 2-4

The immunostimulatory component of Gram-positive bacteria was not clear for a long time, although a structural counterpart of LPS called lipoteichoic acid (LTA) was found in the bacterial membrane; this LTA is also an amphiphilic molecule with a lipid anchor and a gen-

erally negatively charged glycerophosphate backbone. An improved preparation procedure applied to the isolation of LTA from *Staphylococcus aureus* led to biologically active LTA, ^{5–7} whose structure could be assigned by NMR and MS data. ^{5,8} The receptor for LTA recognition is TLR2⁹ accompanied by the co-factors TLR6, ⁷ CD14, ^{10,11} and CD36. ¹²

Modifications of the LTA structure gave information on the prerequisites for the induction of cytokine release. For instance, a complete deacylation led to less active material and selective removal of the D-alanyl residues from the glycerophosphate backbone which strongly reduced the immunostimulatory potency. This result indicated that the lipid anchor and also the D-alanyl residues are essential for the immunostimulatory potency. The chemical synthesis of a truncated LTA, based on the native LTA structure of *S. aureus*, confirmed these results. 13,14 To determine the key components for immune cell activation, several LTA derivatives were synthesized starting from a molecule with two lipid anchors (=two gentiobiosyl-diacylglycerol anchors) and a backbone with six glycerophosphate units substituted

^{*}Corresponding author. Tel.: +49 7531 882538; fax: +49 7531 883135; e-mail: Richard.Schmidt@uni-konstanz.de

Scheme 1. Retrosynthetic scheme for target molecules 1-4.

by four D-alanine residues and one *N*-acetyl-D-glucosamine residue which was more potent than natural LTA.¹⁵ Neither the absence of the gentiobiose residue nor the loss of *N*-acetyl-D-glucosamine altered the ability of LTA with one lipid anchor to induce cytokine release; only replacement of D-alanine by L-alanine blunted the cytokine-inducing potency.^{16,17} These results approximated the crucial pattern required for the immune recognition of LTA and prompted us to synthesize further LTA derivatives with a reduced structure down to the synthetic anchor, namely gentiobiosyl-diacylglycerol, in order to determine the minimal structural requirements for cytokine induction. For these studies compounds 1–4 (Scheme 1) were needed. The synthesis of these compounds is described in this paper.

2. Results and discussion

The retrosynthesis of compounds 1–4 is shown in Scheme 1. Disintegrations ①–④ lead to building blocks 5–7 and to N-benzyloxy-carbonyl (Z)-protected D-alanine. These building blocks consider the presence of gentiobiosyl diacylglycerol, O-(D-alanyl)-glycerol, and 2-O-nonsubstituted glycerol residues, respectively, and their sequence specific linkage via mixed phosphorous diester bonds. Also the most important aspect, the hydrolytic lability of the D-alanyl residues, which are readily cleaved at pH 8.5, 13 is taken into account: as temporary protecting group for building block 6, the p-methoxyl-benzyl (PMB) group is chosen which can be selectively cleaved after completion of the backbone synthesis. Following the attachment of D-alanyl residues with Z-pro-

tected D-alanine and then a complete O-debenzylation will provide the target molecules.

The synthesis of the previously designed building blocks 5-7 and also the sequence specific synthesis of oligomers 8-10 (Scheme 2) has been already reported. 14,15,17 From gentiobiose building block 7¹⁵ and glycerophosphate oligomer **8**, ¹⁷ possessing the required protecting group for regioselective chain extension and following p-alanyl residue attachment, the synthesis of target molecule 1 could be readily accomplished. Ligation of 7 and 8 in the presence of tetrazole and then oxidation with tert-butylhydroperoxide gave phosphate linked intermediate 13, which contains the backbone of the target molecule with n = 2. The treatment of 13 with ceric(IV) ammonium nitrate (CAN)¹⁸ liberated two of the glycerol hydroxy groups affording compound 14. Attachment of the Z-protected p-alanyl residue was performed with excess Z-protected D-alanine in the presence of (benzotriazol-1-yloxy)tripyrrolidinophosphonium hexyfluorophosphate (PyBOP)¹⁹/N-methylimidazole (Me-Im) as condensing agent to give the fully protected target molecule 15. Hydrogenolysis with Pearlman's catalyst²⁰ in a mixture of dichloromethane/ methanol/water gave the desired final product 1 with two p-alanyl residues.

Similarly, from 7 and 9^{17} or 10^{17} compounds 16 and 19, respectively, were obtained, which were transformed into the partially deprotected compounds 18 and 21 and then into target molecules 2 and 3, having three or four D-alanyl residues. For the synthesis of target molecule 4, compound 10 had to be chain extended with building block 6^{17} . The activation of 6 with tetrazole led to the desired phosphite intermediate which on oxidation with

Download English Version:

https://daneshyari.com/en/article/1390902

Download Persian Version:

https://daneshyari.com/article/1390902

<u>Daneshyari.com</u>