

Contents lists available at SciVerse ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Original article

Selective cytotoxic effects on human breast carcinoma of new methoxylated flavonoids from *Euryops arabicus* grown in Saudi Arabia

MEDICINAL

南

Walied M. Alarif^c, Ahmed Abdel-Lateff^{d,e}, Ahmed M. Al-Abd^{f,h}, Salim A. Basaif^a, Farid A. Badria^g, Maher Shamsⁱ, Seif-Eldin N. Ayyad^{a,b,*}

^a Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

^b Department of Chemistry, Faculty of Science, Mansoura University, New Damietta, Egypt

^c Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia

^d Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, P.O. Box 80260, Saudi Arabia

^e Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt

^f Department of Pharmacology and Toxicology Faculty of Pharmacy, King Abdulaziz University, P.O. 80260, Jeddah 21589, Saudi Arabia

^g Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt

^h Department of Pharmacology, National Research Center, Cairo, Egypt

ⁱ Department of Gynecology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt

A R T I C L E I N F O

Article history: Received 21 February 2013 Received in revised form 13 May 2013 Accepted 18 May 2013 Available online 5 June 2013

Keywords: Anti-proliferative Diterpene Flavones HepG2 MCF-7 S-phase

ABSTRACT

The chloroform–methanol extract of *Euryops arabicus*, collected from Saudi provenance, yielded a new kaurane diterpene (**1**) and seven methoxylated flavones (**2–8**), two of which are new (**2** and **3**). Structures of the compounds were elucidated through interpretation of spectral data of NMR, MS and comparison with literature values. All compounds were evaluated for their anti-tumor activities, employing four different cancer cell lines (WI-38, VERO, HepG2 and MCF-7), ABTS free radical scavenging and immunemodulatory effects. All metabolites had considerable antioxidant and immunestimulatory effects. All compounds showed anticancer activity with IC₅₀ in range 10–125 μ M, whilst **2** and **6** showed significant anti-proliferative activity against HepG2 (IC₅₀ = 20 and 15 μ M) and MCF-7 (IC₅₀ = 15 and 10 μ M), respectively. This effect was attributed to significant S-phase cell cycle arrest.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Cancer is one of the leading causes of death in the world [1,2]. The International Agency for Research on Cancer reported that, more than 7 million people died from cancer in 2008 and it was anticipated that it is going to be more or less triplicate by the year 2030 [3]. The treatment of cancer was recently designed by two major approaches aiming at discovering potent antitumor metabolites; bio-chemical and targeted-based. The former gained a significant attention in the recent two decades, which led to discovery of several antitumor agents [4–7].

E-mail address: snayyad2@yahoo.com (S.-E.N. Ayyad).

Asteraceae is a big family of shrubs and herbaceous plants contains about 1100 genera and 25,000 species, widely distributed in the tropical and subtropical regions. It is economically important as a source of food, such as lettuce and artichokes, cooking oils, sweetening agents, and tea infusions [8,9]. Among 100 species of the genus *Euryops*, only *Euryops arabicus* is known in Saudi Arabia [8]. Up to date, Seco-furoermophilanes, furoermophilanes, eremophilanolides, and flavonoids were identified from the genus *Euryops* [10].

The current results showed the proving of the pharmacological mechanism of known class of natural products as a lead of anticancer drug with significant safety. It was clear from the results that compounds **2** and **6** showed potent anti-proliferative activity against HepG2 (IC₅₀ were 20 \pm 0.35 and 15 \pm 1.21 μ M) and MCF-7 (IC₅₀ were 15 \pm 0.35 and 10 \pm 0.14 μ M) respectively. The antiproliferative activity was attributed to significant S-phase cell cycle arrest employing the 5-FU as a positive control.

 $[\]ast$ Corresponding author. Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia. Tel.: +966 5 0096687 (mobile).

^{0223-5234/\$ –} see front matter @ 2013 Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.ejmech.2013.05.025

2. Results and discussion

2.1. Chemistry

In the course of our projects on the isolation of bioactive metabolites from higher plants [11.12], the herbs of *E. arabicus* were collected from Al-Taeif area (Saudi Arabia, April 2011) and extracted with a mixture of CHCl₃:MeOH (1:1, 4 L). Successive fractionation of the total extract on NP-Silica column, preparative thin layer chromatography (PTLC), followed by Sephadex LH-20, yielded a new kaurane diterpene (18,19-dihydroxy-kaura-16-en-3-one, 1) and two new flavones; 7-hydroxy-3',4',6,8-tetrtamethoxyflavone (2) 3',8-dihydroxy-4',5',6,7-tetramethoxyflavone (3) (NMR and spectra, S1). In addition to these compounds, five known flavones: 5,6-dihydroxy-3',4',6,7-tetramethoxyflavone (4), 5hydroxy-4',6,7,8-tetramethoxy flavone (5), 5-hydroxy-3',4',7trimethoxyflavone (6), 5-hydroxy-3',4',6,7,8-petamethoxyflavone (7), and 5,8-dihydroxy-3',4',6,7-tetramethoxyflavone (8) (Fig. 1), were isolated and characterized in comparison with the published data [13-18].

Compound **1** was isolated as white amorphous solid; $[\alpha]_D^{0} = +70$ (*c* 0.066, CHCl₃); its molecular formula was established to be C₂₀H₃₀O₃, based on HRESIMS (positive-ion mode), *m*/*z* = 319.2256 [M + H]⁺. The ¹³C NMR spectral data (¹H decoupled and DEPT) of **1** showed 20 resonances attributable to one methyl, three methine, eleven methylenes and five non-protonated carbons (Table 1).

Two of the six elements of unsaturation, as indicated by the molecular formula of **1**, could be attributed to one carbon–carbon double bond (Table 1) and a carbonyl group (ν_{max} 1694); thus the molecule is tetracyclic. As the ¹H and ¹³C NMR data enabled all but two of the hydrogen atoms within **1** to be accounted for, it was evident that the remaining two protons were present as part of hydroxyl functions, this deduction was supported by IR absorption at ν_{max} 3387 cm⁻¹. After association of all the protons with directly bonded carbons *via* 2D NMR (HSQC) spectral measurements, it was possible to deduce the planer structure of **1** by interpretation of the ¹H–¹H COESY and ¹H–¹³C HMBC spectra (Fig. 2).

From the ¹H–¹H COESY spectrum of **1**, a spin system between H₂-1 and H₂-2 was observed. Long-range C–H (HMBC) correlations observed between H-1_b ($\delta_{\rm H}$ 2.65, dd, J = 14.4, 1.8) and, C-2 ($\delta_{\rm C}$ 44.6 ppm), C-3 ($\delta_{\rm C}$ 213.9 ppm), C-9 $\delta_{\rm C}$ (54.9 ppm), C-10 ($\delta_{\rm C}$ 43.8 ppm) and C-20 ($\delta_{\rm C}$ 19.3 ppm); between the resonances of H₂-

Table 1

W.M. Alarif et al. / European Journal of Medicinal Chemistry 66 (2013) 204-210

¹ H [CDCl ₃ , 600 MHz] and ¹³ C NMR [CDCl ₃ , 150 MHz] NMR spectral data of	1. ^a
---	-----------------

P.	$\delta_{C}{}^{b}$	δ_{H}^{c}	НМВС
1 _a	55.8	2.65 (dd, 14.4, 1.8)	C-2, C-3, C-9, C-10, 2 C-20
1_{b}		2.37 (d, 14.4)	
2 _a	44.6	2.57 (dd, 13.2, 1.8)	
2_{b}		1.95 (d, 13.2)	
3	213.9		
4	46.8		
5	50.2	1.59 (dd, 6.6, 3.6)	C-3, C-4, C-10, 2 C-20
6 _a	20.8	1.73 (m)	C-5, C-7, C-8, C-10
6 _b		1.46 (m)	
7 _a	32.7	1.62 (m)	
7 _b		1.51 (m)	C-5, C-6, C-8, C-9
8	43.9		
9	54.9	1.33 (br d, 7.8)	C-7, C-8, C-10, C-11, C-12, C-15, C-20
10	43.8		
11 _a	18.5	1.68 (m)	
11_b		1.44 (m)	
12	40.4	1.55 (m)	
13	43.5	2.66 (m)	C-8, C-11, C-12, C-15
14a	39.1	1.87 (br d, 7.8)	
14_b		1.14 (m)	
15	48.5	2.09 (br s)	C-8, C-9, C-13, 2 C-14
16	154.8		
17 _a	103.6	4.82 (s)	C-13, C-15, C-16
17 _b		4.76 (s)	
18 _a	70.5	3.87 (d, 10.8)	C-3, C-4, C-5
18 _b		3.52 (d, 10.8)	
19a	65.0	3.78 (d, 10.8)	C-3, C-5
19 _b		3.74 (d, 10.8)	
20	19.3	1.07 (s)	C-1, C-9, C-10

 $^a\,$ All assignments are based on 1D and 2D measurements (HMBC, HSQC, COESY). $^b\,$ Implied multiplicities were determined by DEPT (C = s, CH = d, CH₂ = t).

^c J in Hz.

18 ($\delta_{\rm H}$ 3.87, d, J = 10.8; $\delta_{\rm H}$ 3.52, d, J = 10.8) and those of C-3 ($\delta_{\rm C}$ 213,9 ppm), C-4 ($\delta_{\rm C}$ 46.8 ppm), and C-5 ($\delta_{\rm C}$ 50.2 ppm); between H-5 ($\delta_{\rm H}$ 1.59, dd, J = 6.6, 3.6) and C-3 ($\delta_{\rm C}$ 213.9 ppm), C-4 ($\delta_{\rm C}$ 46.8 ppm), C-10 ($\delta_{\rm C}$ 43.8 ppm) and C-20 ($\delta_{\rm C}$ 19.3 ppm), this led to closing of ring A. A ¹H-¹H spin system between H₂-7 ($\delta_{\rm H}$ 1.62, m; $\delta_{\rm H}$ 1.51, m) and H₂-6 ($\delta_{\rm H}$ 1.73, m; $\delta_{\rm H}$ 1.64, m) which further correlated to H-5 ($\delta_{\rm H}$ 1.59, dd, J = 6.6, 3.6) were observed. Long-range C-H correlations were observed between H-9 ($\delta_{\rm H}$ 1.33, br d, J = 7.8, 3.6) and C-20 ($\delta_{\rm C}$ 19.3 ppm); between the resonances of H₂-7_b ($\delta_{\rm H}$ 1.51, m) and those of C-5 ($\delta_{\rm C}$ 50.2 ppm), C-6 ($\delta_{\rm C}$ 20.8 ppm), C-8 ($\delta_{\rm C}$ 43.9 ppm), and C-9

Fig. 1. Chemical structures of 1-8 (1).

Download English Version:

https://daneshyari.com/en/article/1392718

Download Persian Version:

https://daneshyari.com/article/1392718

Daneshyari.com