

Available online at www.sciencedirect.com

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY

European Journal of Medicinal Chemistry 44 (2009) 1106-1118

Original article

http://www.elsevier.com/locate/ejmech

N-Acylated and N,N'-diacylated imidazolidine-2-thione derivatives and N,N'-diacylated tetrahydropyrimidine-2(1H)-thione analogues: Synthesis and antiproliferative activity

Sara Cesarini ^{a,*}, Andrea Spallarossa ^a, Angelo Ranise ^a, Silvia Schenone ^a, Camillo Rosano ^b, Paolo La Colla ^{c,**}, Giuseppina Sanna ^c, Bernardetta Busonera ^c, Roberta Loddo ^c

^a Dipartimento di Scienze Farmaceutiche, Università di Genova, Viale Benedetto XV 3, I-16132 Genova, Italy

^b Bioinformatics and Structural Proteomics, National Institute for Cancer Research (IST), Largo R. Benzi 10, I-16132 Genova, Italy ^c Dipartimento di Scienze e Tecnologie Biomediche, Università di Cagliari, Cittadella Universitaria, S.S. 554, Km 4500, I-09042 Monserrato, Cagliari, Italy

> Received 19 May 2008; received in revised form 17 June 2008; accepted 18 June 2008 Available online 24 June 2008

Abstract

Fifty-one acylthioureas (ATUs) incorporating imidazolidine-2-thione or its upper cyclohomologue were prepared by parallel synthesis and evaluated against a high number of human cancer cell lines for antiproliferative activity. ATUs **10** (3,5-dichlorobenzoyl), **1s** (2-furoyl), **3s** (2-furoyl) and **1t** (2-thenoyl) displayed activity against leukemia, melanoma LOX IMVI, non-small cell lung NCI-H522, renal 786-0, CAKI-1, SN12C, UO-31 and breast MCF7, MDA-MB-435, T-47D cancer cell lines in the $0.3-9.7 \mu$ M concentration range. Compound **14s** exhibited selectivity for melanoma SK-MEL-5 (GI₅₀ < 5 nM); **1s** for leukemia MOLT-4 (GI₅₀: 300 nM); **1q**, **3b** and **3q** for renal cancer UO-31 (GI₅₀: 70–200 nM); **8s**, **9s** for non-small cell lung cancer EKVX (GI₅₀: 300, 10 nM) and **3j** for HOP-92 (GI₅₀: 700 nM) cell line. © 2008 Elsevier Masson SAS. All rights reserved.

Keywords: Acylthioureas; Antiproliferative activity; Parallel synthesis

1. Introduction

Acylthioureas (ATUs) have been reported to display a wide range of biological activities, such as antiviral [1], antibacterial [2], tubercolostatic [3], fungicidal [4–6], herbicidal [7,8], plant growth regulating [7,9], anticonvulsant [10], antiaggregating [11–13], antiarrythmic [13], analgesic [13], antihyperlipidemic [13], local anaesthetic [13], thyreostatic [14], central nervous system (CNS) depressant [15] and antiproliferative [13,16–19]. In particular, some benzoylphenylthioureas have been recently described as potent antitumor agents inhibiting tubulin polymerization [19] and some quinoline and quinazoline-acylthiourea derivatives have been identified as potent and selective inhibitors of the autophosphorylation (tyrosine kinase activity) of platelet-derived growth factor (PDGF) receptor, involved in cell-proliferation processes [20].

In the past, the pharmacological potential of this chemical class had attracted our attention and had led some of us to synthesize a number of ATUs endowed with various biological activities [11–13]. Recently, the N,N'-bis(4-chlorobenzoyl) derivatives of imidazolidine-2-thione (**1j**, Fig. 1) revealed a significant cytotoxicity in MT-4 cell-based assays (IC₅₀ = 9.9 μ M). In order to investigate the influence of the acyl portion on the antiproliferative activity, we prepared in parallel a series of symmetric analogues of **1j** (Table 1) in which the 4-chlorobenzoyl moiety was replaced with an acetyl (**1a**), a 1-naphthoyl (**1r**) or an heteroaroyl (2-furoyl **1s**, 2-thienoyl **1t**). Besides, the substitution on **1j** phenyl ring was varied by shifting the chlorine atom to the *meta* (**1i**) and *ortho* (**1h**) position, or by replacing it with a more electron-withdrawing

^{*} Corresponding author. Tel.: +39 010 353 8361; fax: +39 010 353 8358.

^{**} Corresponding author. Tel.: +39 070 675 4147; fax: +39 070 675 4210. E-mail addresses: sara.cesarini@unige.it (S. Cesarini), placolla@unica.it

⁽P. La Colla).

Fig. 1. ATU lead compound.

(3-nitro 1k) or an electron-donating (2- and 4-methyl 1e, 1f; 4methoxy 11) or a more sterically demanding (4-t-butyl 1g) substituent. Also the phenyl ring unsubstitution (1d), dichlorosubstitution [patterns 2.4 (1m), 3.4 (1n) and 3.5 (1o)] and polysubstitution (4-chloro-3-nitro 1p; 3,4,5-trimethoxy 1q) were considered. With the aim to further expand the structure-activity relationship (SAR) study, we synthesized the superior cyclohomologues 2 (Table 2) and the asymmetric analogues 3 (Table 3) in which one of the two acyl moiety was replaced by a formyl group. Successively, we replaced one of the benzoyl functions of ATU 1d with the electronpoor α,β -unsaturated system N-methylene(malononitrile) (4d: Y = W = cyano, Table 4). The significant antiproliferative activity of 4d prompted us to explore the influence of the nature of the two electron-withdrawing groups Y and W on the activity. Thus, we synthesized a series of analogues of 4d (ATU 4s-14s, Table 4) keeping constant the N-furoyl portion, which had given the best results in series 1-3, and varying Y and W (Y = W or Y \neq W; Y, W: cyano, acetyl,

Table 1

Antiproliferative activity of ATUs 1a, 1d-t against MT-4 cells^a

Compound	RCO	IC ₅₀ ^b (µM)	
1a	Acetyl	>100	
1d	Benzoyl	94	
1e	2-Toluoyl	>100	
1f	4-Toluoyl	35	
1g	4-t-Butylbenzoyl	>100	
1h	2-Chlorobenzoyl	54	
1i	3-Chlorobenzoyl	35	
1j	4-Chlorobenzoyl	9.9	
1k	3-Nitrobenzoyl	>100	
11	4-Methoxybenzoyl	>100	
1m	2,4-Dichlorobenzoyl	39	
1n	3,4-Dichlorobenzoyl	4.6	
10	3,5-Dichlorobenzoyl	13	
1p	4-Chloro-3-nitrobenzoyl	11	
1q	3,4,5-Trimethoxybenzoyl	7.0	
1r	1-Naphthoyl	13	
1s	2-Furoyl	7.4	
1t	2-Thenoyl	11	

^a Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.

^b Compound concentration required to reduce MT-4 cell growth by 50% in comparison with untreated controls, as measured by the MTT method.

Table 2

Antiproliferative activity of ATUs 2d, 2f, 2h, 2j, 2m–o, 2q, 2s and 2t against MT-4 cells^a

$\begin{array}{c} R \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $					
Compound	RCO	$IC_{50}^{\ b}(\mu M)$			
2d	Benzoyl	>100			
2f	4-Toluoyl	>100			
2h	2-Chlorobenzoyl	>100			
2ј	4-Chlorobenzoyl	38			
2m	2,4-Dichlorobenzoyl	>100			
2n	3,4-Dichlorobenzoyl	72			
20	3,5-Dichlorobenzoyl	30			
2q	3,4,5-Trimethoxybenzoyl	>100			
2s	2-Furoyl	36			
<u>2t</u>	2-Thenoyl	>100			

^a Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.

^b Compound concentration required to reduce MT-4 cell growth by 50% in comparison with untreated controls, as measured by the MTT method.

pivaloyl, benzoyl, methoxycarbonyl, ethoxycarbonyl, aminocarbonyl and p-chlorophenylaminocarbonyl). Finally, we prepared three urea-isosters (**15s**-**17s**, Table 4).

2. Chemistry

The title compounds and three urea-isosters were prepared (Scheme 1) by reacting (thio)ureas I, II, IV–XVIII (Fig. 2a) with the suitable acylating reagent [acetic anhydride (a) and acyl chlorides (b-t)] (Fig. 2b). Thioureas I and II and the acylating reagents were commercially available, while thioureas IV–XV and ureas XVI–XVIII were prepared according to one-pot procedures (Scheme 1b) previously described by

Table 3

Antiproliferative activity of ATUs $3a-d,\ 3f,\ 3j,\ 3m-o,\ 3q$ and 3s against MT-4 cells^a

R	_N		,0
// 0		Í	Ύ Η

	5	
Compound	RCO	$IC_{50}^{\ b}(\mu M)$
3a	Acetyl	>100
3b	Pivaloyl	43
3c	trans-Cinnamoyl	>100
3d	Benzoyl	12
3f	4-Toluoyl	31
3j	4-Chlorobenzoyl	27
3m	2,4-Dichlorobenzoyl	>100
3n	3,4-Dichlorobenzoyl	41
30	3,5-Dichlorobenzoyl	15
3q	3,4,5-Trimethoxybenzoyl	13
3s	2-Furoyl	9.0

^a Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.

^b Compound concentration required to reduce MT-4 cell growth by 50% in comparison with untreated controls, as measured by the MTT method.

Download English Version:

https://daneshyari.com/en/article/1393316

Download Persian Version:

https://daneshyari.com/article/1393316

Daneshyari.com