

Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Research paper

Structural refinement of pyrazolo[4,3-*d*]pyrimidine derivatives to obtain highly potent and selective antagonists for the human A₃ adenosine receptor

癯

Lucia Squarcialupi ^a, Daniela Catarzi ^a, Flavia Varano ^a, Marco Betti ^a, Matteo Falsini ^a, Fabrizio Vincenzi ^b, Annalisa Ravani ^b, Antonella Ciancetta ^c, Katia Varani ^b, Stefano Moro ^{c, **}, Vittoria Colotta ^{a, *}

^a Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e salute del Bambino, sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019, Sesto Fiorentino, Italy

^b Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy

^c Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via Marzolo 5, 35131, Padova, Italy

ARTICLE INFO

Article history: Received 16 September 2015 Received in revised form 6 November 2015 Accepted 7 November 2015 Available online 17 November 2015

Keywords:

G-protein-coupled receptors Adenosine receptor antagonists Pyrazolopyrimidines Ligand-receptor modeling studies

ABSTRACT

In previous research, we identified some 7-oxo- and 7-acylamino-substituted pyrazolo[4,3-d]pyrimidine derivatives as potent and selective human (h) A_3 adenosine receptor (AR) antagonists.

Herein we report on the structural refinement of this class of antagonists aimed at achieving improved receptor-ligand recognition. Hence, substituents with different steric bulk, flexibility and lipophilicity (Me, Ar, heteroaryl, CH₂Ph) were introduced at the 5- and 2-positions of the bicyclic scaffold of both the 7-oxo and 7-amino derivatives, and acyl residues were appended on the 7-amino group of the latter. All the 2-phenylpyrazolo[4,3-d]pyrimidin-7-amines and 7-acylamines bearing a 4-methoxyphenyl- or a 2-thienyl group at the 5-position showed high hA₃ affinity and selectivity. In particular, the 2-phenyl-5-(2-thienyl)-pyrazolo[4,3-d]pyrimidin-7-(4-methoxybenzoyl)amine **25** (K_i = 0.027 nM) is one of the most potent and selective hA₃ antagonists reported so far. By using an *in silico* receptor-driven approach the obtained binding data were rationalized and the molecular bases of the observed hA₃ AR affinities were critically described.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Adenosine is a neuromodulator that plays an important role in the homeostasis of the human body, both in periphery and in the central nervous system. Adenosine mediates its effects through activation of G-protein-coupled receptors classified as A_1 , A_{2A} , A_{2B} and A_3 subtypes. Adenosine receptors (ARs) are coupled to G_i (A_1 and A_3) or G_s proteins (A_{2A} and A_{2B}) thus reducing or enhancing adenylate cyclase activity [1,2], but they also modulate other signaling pathways, depending on the cell type and the situation. The A_3 receptor subtype, coupled also to G_q proteins, stimulates phospholipase C activity, thus enhancing intracellular calcium levels [3]. In addition, this AR subtype modulates mitogenactivated protein kinase (MAPK) pathways, that can be both activated or inhibited, depending on the cellular model. The A_3 AR influence on MAPK activity explains the role of this receptor on cell proliferation and differentiation [3,4] and in tumor development and progression. A_3 AR is overexpressed in several types of cancer cells, and is thus considered as a possible biological marker for tumors [3].

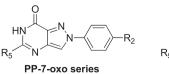
It is well established that MAPKs are involved in tubulointerstitial fibrosis which is a common feature of kidney diseases leading to chronic renal failure [5]. In a recent study, the potent and selective A₃ AR antagonist LJ-1888 ((2R,3R,4S)-2-[2-chloro-6-(3-

Abbreviations: AR, adenosine receptor; NECA, 5'-(N-ethyl-carboxamido)adenosine; cAMP, cyclic adenosine monophosphate; Cl-IB-MECA, 2-chloro-N⁶-(3iodobenzyl)5'-(N-methylcarboxamido)adenosine; DPCPX, 8-cyclopentyl-1,3dipropyl-xanthine; ZM-241385, 4-(2-[7-amino-2-(2-furyl)[1,2,4]-triazolo[2,3-a] [1,3,5]triazin-5-ylamino]ethyl)phenol; I-AB-MECA, N⁶-(4-amino-3-iodobenzyl)-5'-(N-methylcarboxamido)adenosine; IEele, electrostatic contribution to the interaction energy; IEhyd, hydrophobic contributions to the interaction energy; IEFs, interaction energy fingerprints; TM, transmembrane; EL2, second extracellular loop; PP, pyrazolo[4,3-d]pyrimidine; MOE, molecular operating environment.

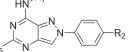
^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: stefano.moro@unipd.it (S. Moro), vittoria.colotta@unifi.it (V. Colotta).

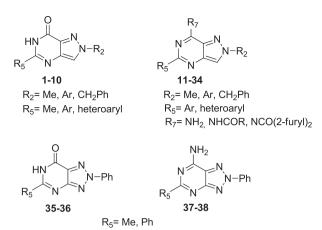

iodobenzylamino)-9H-purine-9-yl]tetrahydrothiophene-3,4-diol) blocked the development and attenuated the progression of renal interstitial fibrosis [5]. A₃ AR antagonists have also been shown to provide significant renal protection against acute injury, such as ischemic or myoglobinuric renal failure, a leading cause of renal injuries for patients undergoing surgery involving the kidney, liver or aorta [6,7]. These findings suggest that A₃ AR antagonists might become new therapeutic tools for the treatment of both chronic renal disease and acute renal ischemia and reperfusion injury.

A₃ AR antagonists have demonstrated efficacy in eye pathologies. In particular, nucleoside-like A₃ AR antagonists have proven to be effective in lowering intraocular pressure [8] and, recently, it has been reported that the potent A₃ AR antagonist MRS 1220 (N-[9-chloro-2-(2-furanyl)-1,2,4-triazolo[1,5-c]quinazolin-5-yl]benzeneacetamide) prevents oligodendrocyte damage and myelin loss triggered by ischemia or by activation of the A₃ receptor in the rat optic nerve [9].


Hence, blockage of the A_3AR has proven to be useful for the treatment of diverse diseases, however its role is still to be elucidated under other pathophysiological conditions, such as inflammation, cancer or pain [3,10]. Therefore, the identification of new potent and selective ligands which clarify the therapeutic potential arising from blocking or stimulating the A_3 AR remains an attractive objective [3,10,11].

Over the past two decades our research group has acquired a wide experience in the design and synthesis of AR antagonists [12–22]. These studies have led to the identification of a great number of potent and selective human (h) A₃ receptor antagonists, belonging to various heterocyclic classes. Most recently, we have developed some 7-oxo- and 7-amino-pyrazolo[4,3-d]pyrimidine derivatives (PP-7-oxo series and PP-7-amino series, respectively, Chart 1), bearing an aryl group at the 2-position [18,20,21]. Different structure-activity relationships (SARs) were highlighted in the two series. The 7-oxo derivatives showed, on the whole, nanomolar affinity and complete selectivity for the hA₃ AR while the 7-amino derivatives displayed a broad range of affinity for the different AR subtypes, depending on the nature of the substituents at the 5- and 7-positions of the pyrazolopyrimidine scaffold. In particular, 5-arylalkyl chains, combined with a free 7-amino group, shifted affinity toward the A1 and A2A ARs [21]. Instead, smaller groups at the 5-position, such as methyl or phenyl, combined with acyl residues (COMe, COAr, COheteroaryl) on the 7-amino group led to efficient and selective binding at the hA₃ AR [20].

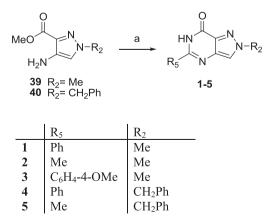
Herein we report on the structural refinement of the pyrazolo [4,3-*d*]pyrimidine derivatives aimed at achieving better and selective hA₃ receptor recognition. To address this issue, substituents with different steric bulk, flexibility and lipophilicity were probed at the 5- and 2-position of the bicyclic scaffold of both the 7-oxo and 7-amino series. Further optimization of the 7-amino derivatives was pursued by introducing acyl residues on the 7-amino group. Hence, the 7-oxo- and 7-amino- substituted derivatives **1–10** and **11–34**, respectively, were synthesized and tested at hARs (Chart 2). Moreover, a small set of 2-phenyl[1,2,3]triazolo[4,5-*d*]



 R_5 = H, Me, Et, Ph R_2 = H, OMe, Me

PP-7-amino series R_5 = Me, Ph, (CH₂)_n-Ar R_2 = H, OMe R_7 = H, COAr, COHeteroaryl

Chart 1. Previously reported Pyrazolo[4,3-d]pyrimidine Series.


Chart 2. Herein reported Pyrazolo[4,3-*d*]pyrimidine derivatives **1–34** and their 3-azaanalogues 1,2,3-Triazolo[4,5-*d*]pyrimidines **35–38**.

pyrimidine derivatives, bearing either an $\cos(35-36)$ or an amino (37-38) function at the 7-position (Chart 2), were synthesized. These triazolo-pyrimidine derivatives were designed as 3-aza analogues of the pyrazolo[4,3-*d*]pyrimidine series because the presence of the 3-nitrogen atom was thought to increase AR affinity, being a common feature of many potent and selective A₃ AR antagonists [10,11].

2. Chemistry

The pyrazolo[4,3-*d*]pyrimidin-7-one derivatives **1–10** were prepared as depicted in Schemes 1 and 2. The pyrazolopyrimidin-7-ones **1–5**, bearing a methyl- and a benzyl group at the 2-position, were synthesized by reacting the suitable methyl 4-aminopyrazole-3-carboxylates **39** [23] and **40** [24] with ammonium acetate and triethyl orthobenzoate (compounds **1**, **4**), triethyl orthoacetate (compounds **2**, **5**) or ethyl 4-methoxyphenyliminobenzoate [25] (compound **3**) (Scheme 1).

The pyrazolopyrimidin-7-ones **6–10**, bearing an aryl moiety at the 2-position, were obtained as shown in Scheme 2. Allowing N,N-dimethyl-2-nitroetheneamine [26] to react with suitable N₁-aryl-hydrazono-N₂-chloroacetates **41–43** [27–29] in chloroform, the ethyl 4-nitropyrazole-3-carboxylates **44** and **45**, **46** [18] were obtained. These compounds were reduced with cyclohexene or hydrogen and Pd/C to give the corresponding 4-amino derivatives **47** and **48**, **49** [18] which were cyclized by reaction with ammonium

Scheme 1. (a) R_5 -C(OEt)₃ or 4-OMeC₆H₄-C(OEt)NH₂⁺Cl⁻, NH₄OAc, mw, 130 °C.

Download English Version:

https://daneshyari.com/en/article/1393840

Download Persian Version:

https://daneshyari.com/article/1393840

Daneshyari.com