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a b s t r a c t

A large database of milk/plasma ratios, M/P, for 179 drugs and hydrophobic environmental pollutants has
been constructed from literature data. Application of linear analyses shows that drugs preferentially
partition into the aqueous and the protein phases of milk, but that the pollutants partition into the fat
phase. No useful linear equation could be obtained for the entire 179 compound data set, but an artificial
neural network with only five Abraham descriptors as input resulted in errors in log(1þM/P) of only
0.0574, 0.116 and 0.093 log units for a training set of 135 compounds, an internal test set of 22
compounds and an external test set of 22 compounds respectively. These errors correspond to 0.203,
0.193 and 0.334 log units respectively when transformed into errors in log(M/P).

� 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

For many years there has been concern over the presence of drug
contaminants in human milk, as set out in recent reviews [1–4], but
recently there has been additional concern over environmental
pollutants in human milk, see for example [5–7]. Ito et al. [2,8] have
proposed an ‘Exposure Index’ that relates the milk to plasma ratio,
M/P, the milk intake, A, and the Infant Drug Clearance to a time
averaged drug exposure level,

Exposure Index ð%Þ¼ð100�M=P�AÞ=Infant Drug clearance (1)

A key parameter, M/P, is the ratio of drug or pollutant concen-
tration in milk to that in plasma. Hence any method that can be
used to predict M/P ratios would be of very considerable value.

Not surprisingly, there have been numerous attempts to predict
these ratios. However, it is quite difficult to compare results. Some
authors use M/P itself, whereas other authors use log(M/P), many
authors quote only the regression coefficient, R, or R2, and do not
give details of the standard error or the root mean square error
(much more useful statistics), and some authors erroneously refer
to fits of M/P or of log(M/P) as ‘predictions’. In this work we make
a distinction between statistics of fitting a set of values to some

equation or algorithm, and statistics that refer to the prediction of
values in some external test set that has not been used to set up the
equation or algorithm used to obtain the predictive values.

Even aside from the way that results are presented, the actual
system is very complicated. Fleishaker et al. [9] pointed out that
a drug in plasma and in milk could exist either as the free drug or as
protein-bound drug, and a drug in plasma and in milk could exist as
a neutral species or as an ionised species depending on the pKa of
the drug and the pH. Furthermore, a drug could partition into the
aqueous phase of milk or could partition into the separate fat phase
of milk. Atkinson and Begg [10] published the first comprehensive
analysis of M/P ratios, based on the suggestions of Fleishaker et al.
[9]. They [9] set out plasma protein binding and milk protein
binding for 14 drugs, and obtained an equation that related the two.
Then milk protein binding could be estimated for any drug for
which plasma protein binding was known; the two protein binding
values were used as part of a fitting algorithm. Atkinson and Begg
[10] also corrected for ionisation of acids or bases, using the Hen-
derson–Hasselbach equation and taking the pH of plasma as 7.4 and
that of milk as 7.2 (although other workers have used 7.0 as the pH
of milk [11]). There are a number of assumptions in this ionisation
correction. (a) There is an equilibrium between the unionised
species in milk and the unionised species in plasma, but there is no
equilibrium between the ionised species in milk and the ionised
species in plasma; there seems to be no evidence for this
assumption at all. (b) The pKa of a drug in plasma is the same as the
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pKa in milk (taken as the pKa in water). As far as we know, no pKa of
any drug has been determined in plasma, and so there is no basis
for taking pKa in plasma as the same as that in water. The method of
Atkinson and Begg [10,12,13] was examined by Larsen et al. [14]
who concluded that it had little predictive power, but the conclu-
sions of Larsen et al. have been challenged by Doogue et al. [15] and
by Ilett [16].

Other workers have avoided the protein binding and the pKa

problems altogether. Agatonovic-Kustrin et al. [17] examined a set
of 60 drug compounds, and calculated 61 descriptors for each
drug. This was reduced to 26 descriptors for each drug in the final
artificial neural network (ANN) which was applied to values of
log(M/P). The set of 60 drugs was divided into a training set and
an internal validation set (50 drugs) and an independent external
test set of 10 drugs to test the predictive ability of the ANN. The
root mean square errors (RMSE) in log(M/P) were 0.590 for the
training set, 0.900 for the internal validation set and 0.425 for the
external test set; the result is rather peculiar because errors in
predictions for an external test set are invariably larger than errors
in fitting a training set. In a later paper [18], the same workers
examined a larger set of 123 drugs and applied an ANN to M/P
ratios themselves. Nine calculated descriptors were used, but no
statistics at all were given. Katritzky et al. [19] investigated M/P
ratios of a set of 115 drugs, using log(M/P) as the dependent
variable. They started with 850 descriptors for each drug and
reduced this to the best 7 descriptors that were used in a multiple
linear regression. After eliminating 15 drugs, a training set of 67
drugs could be fitted with an error of 0.324 log units, and an
independent test set of 33 drugs could be predicted with an error
of 0.332 log units. Zhao et al. [20] used a support vector machine,
SVM, method to analyze M/P ratios for 126 drugs. The only
statistic they gave was an ‘accuracy’ of 90.48%, which refers to
classification into two sets, Class 1 with 0>M/P> 0.1 and Class 2
with 1>M/P> 0.1; however this classification appears to be at
odds with data in their Table 1.

Due to the wide applicability of linear free energy relationships
(LFERs) in a large number of areas, it seemed useful to start our
investigations on the linear modeling and prediction of M/P value
using LFER methods. Although the multiple linear regression
analysis (MLRA) that is used in the implementation of LFERs is
a very convenient method of analysis, it is limited (as the name
implies) to linear processes. When nonlinear phenomena are
significant to some extent within the data investigated, LFERs are
no longer the appropriate method of analysis, and nonlinear
modeling techniques such as artificial neural networks (ANNs) are
necessary in order to build an accurate and reliable model. ANN
has recently gained much popularity in dealing with nonlinear
relationships [21]. A detailed description of the theory behind
a neural network has been adequately described elsewhere [22].
An ANN is a biologically inspired computer program designed to
learn from data in a manner of emulating the learning pattern in
the brain. Most ANN systems are very complex high dimension
processing systems. The relevant principle of supervised learning
in an ANN is that it takes numerical inputs (the training data) and
transfers them into desired outputs. The input and output nodes
may be connected to the ‘external world’ and to other nodes
within the network. The way in which each node transforms its
input depends on the so-called ‘connection weights’ or ‘connec-
tion strength’ and bias of the node, which are modifiable. The
output values of each node depend on both the weight strength
and bias values. For the present purpose, the great power of ANNs
stems from the fact that it is possible to train them. Training is
done by continually presenting the networks with known inputs
and outputs and modifying the connection weights and biases
between the individual nodes. This process is continued until the

output nodes of the network match the desired outputs to a stated
degree of accuracy. Training of the ANN can be performed by using
a back-propagation algorithm. In order to train the network using
a back-propagation algorithm, the differences between the ANN
output and its desired value are calculated after each training
iteration and the values of weights and biases modified by using
these error terms. In the MLR method, the analysis is limited to
a certain number of possible interactions, but in the ANN method
more terms can be examined for interactions between features.
ANNs are capable of recognizing nonlinear relationships between
inputs and outputs. In addition, the ANN can use qualitative as
well as quantitative inputs, and does not require an explicit rela-
tionship between the inputs and the outputs.

It seems therefore that there is still scope for analyses of M/P or
log(M/P) values for drugs, using both LFER and ANN methods, and
for investigating if the same methods can be used for environ-
mental pollutants; to date, the latter have not been studied at all.

2. Methods

The plasma/milk system is very complicated, and it is possible
that simple linear equations for M/P or for log(M/P) might not be
very successful. However, as a start we used the same method that
we have previously employed [23–27] for partitions from blood or
plasma to various biological systems. The method uses the linear
free energy relationship, LFER, shown as Eq. (2).

SP ¼ cþ eE þ sSþ aAþ bBþ vV (2)

In Eq (2) SP is the dependent variable, for example M/P or log(M/P),
and the independent variables are properties of drugs and envi-
ronmental pollutants (solutes) as follows [28,29]. E is the solute
excess molar refractivity in units of (cm3 mol�1)/10, S is the solute
dipolarity/polarizability, A and B are the overall or summation
hydrogen bond acidity and basicity, and V is the McGowan volume
in units of (cm3 mol�1)/100. Even if Eq. (2) itself is not successful,
the five descriptors might be useful.

In addition to Eq. (2) we used an ANN that can deal with
nonlinear processes, as might be the plasma–milk process. As
inputs we used the five solute descriptors shown in Eq. (2) as
calculated by the PharmaAlgorithms software package ‘Absolv’
[30]. The values of M/P that we have used [12,18–20,31–101] both
for drugs and environmental pollutants are given in Table 1,
together with the calculated Absolv descriptors.

3. Results and discussion

3.1. LFER methods

The plasma to milk system is very complicated, even in terms of
the separate phases of milk as shown in Fig. 1. Because the volumes
of the phases are not the same, the relationship between the three
equilibrium constants and the overall equilibrium constant for
plasma to milk, M/P, is

M=P ¼ Kpf � Vf=Vm þ Kpp � Vp=Vm þ Kpw � Vw=Vm (3)

In Eq. (3), Vf/Vm, Vp/Vm and Vw/Vm are the ratios of the volumes of
the fat phase, the protein phase and the aqueous phase to the total
milk phase (so that Vfþ Vpþ Vw¼ Vm). It is rather evident, just from
Eq. (2) that linear equations are not likely to yield satisfactory
results. When we applied Eq. (1) to the plasma to milk system,
using M/P or log(M/P) or log(1þM/P) we obtained no useful
equations. We therefore turned to the nonlinear method of artificial
neural networks.
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