
#### European Journal of Medicinal Chemistry 84 (2014) 51-58

Contents lists available at ScienceDirect

## European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech



# Design, synthesis and characterization of fluoro substituted novel pyrazolylpyrazolines scaffold and their pharmacological screening

### Sharad C. Karad<sup>\*</sup>, Vishal B. Purohit, Dipak K. Raval

Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120 Gujarat, India

#### ARTICLE INFO

Article history: Received 15 May 2014 Received in revised form 2 July 2014 Accepted 3 July 2014 Available online 4 July 2014

Keywords: Microwave irradiation <u>Pyrazolylpyrazolines</u> Antimicrobial activity Antituberculosis activity Antimalarial activity

#### 1. Introduction

The most imperative vector-borne infectious diseases malaria is caused by the protozoan parasite *Plasmodium falciparum* [1]. The most recent report from the WHO states that malaria is responsible for the death of over 1 million persons every year including children under the age of five. It is most common in subtropical and tropical areas and 90% of the cases are originated in sub-Saharan Africa [2]. Tuberculosis is the second most common lethal infectious disease subsequent to AIDS and HIV [3]. About one-third of the world's population is infected by *Mycobacterium tuberculosis* every year and more than 2 million deaths are reported [4]. In this context, it was thought worth to synthesize novel compounds which may exhibit synergistic potency to be employed as antimicrobial, antituberculosis and antimalarial agents.

The substitution of fluorine in to a potential drug molecule can improve efficacy of drugs by extending pharmacokinetic and pharmacodynamics properties [5]. Trifluoromethyl group is a wellknown substituent of unique qualities. Its high lipophilicity enables to improve pharmacological activities of the molecule [6,7]. Pyrazoles and their derivatives possess numerous medicinal applications because of their versatile biological activities [8–14]. They

\* Corresponding author.

#### ABSTRACT

A novel series of fluoro substituted pyrazolylpyrazolines **7a–I** was synthesized in good to excellent yield (77–88%) from pyrazole chalcones **5a–d** and substituted phenyl hydrazine hydrochlorides **6a–c** under microwave irradiation. The newly synthesized compounds were screened for their preliminary *in vitro* antibacterial activity against a panel of pathogenic stains of bacteria and fungi, antituberculosis activity against *Mycobacterium tuberculosis* H37Rv and antimalarial activity against *Plasmodium falciparum*. Compounds **7a**, **7b**, **7g**, **7h**, **7j** and **7k** displayed excellent activity against *P. falciparum* stain as compared to quinine IC<sub>50</sub> 0.268. Good antitubercular activity was exhibited by compounds **7a**, **7e**, **7h** and **7k**. Some of them also exhibited superior antibacterial activity as compared to the first line drugs.

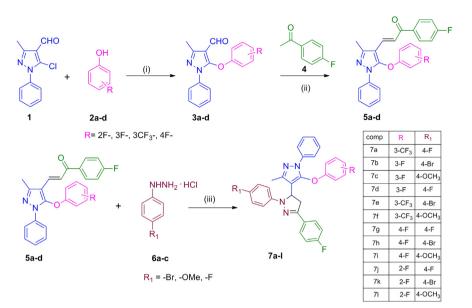
© 2014 Elsevier Masson SAS. All rights reserved.

have occupied a distinct place due to a range of bioactivities such as antiproliferative [15], antimicrobial [16–18], antidepressant [19], antipyretic [20], anti-inflammatory [21] and anticonvulsant [22]. Pyrazoline is also an important nitrogenous heterocyclic moiety in many drugs. Literature survey revealed that various pyrazoline derivatives have displayed significant biological roles [23–29].

Microwave irradiation as a source of energy leads to environmentally benign protocols in terms of reduction in reaction time, energy saving with high efficiency, improved yields and selectivity [30]. In context of the above consequences and in continuation to our previous studies directed toward the synthesis of biologically active novel heterocyclic scaffolds [30–37], herein we report microwave assisted synthesis of some fluorinated novel pyrazolylpyrazoline derivatives. The synthesized compounds exhibited an interesting profile as antimalarial, antitubercular and antimicrobial agents.

#### 2. Chemistry

The synthesis of novel series of pyrazolylpyrazolines **7a–1** was performed as outlined in Scheme 1. The starting material 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde **1** was prepared according to Vilsmeier–Haack reaction of 3-methyl-1-phenyl-1Hpyrazol-5(4H)-one [**38**]. 3-methyl-5-substituted aryloxy-1-phenyl-1H-pyrazole-4-carbaldehydes **3a–d** were prepared by refluxing compound **1** and substituted phenols **2a–d** in presence of anhydrous K<sub>2</sub>CO<sub>3</sub> as basic catalyst in DMF as solvent. 3-methyl-5-










*E-mail addresses:* krdsharad1126@gmail.com (S.C. Karad), dipanalka@yahoo. com (D.K. Raval).



Scheme 1. Synthesis of 5-(4-fluorophenyl)-3'-methyl-5'-substituted aryloxy-1',2-diphenyl-3,4-dihydro-1'H,2H-3,4'-bipyrazole (7a–1) (i) DMF, K<sub>2</sub>CO<sub>3</sub>, Reflux 2 h. (ii) 20% ethanolic NaOH, room temperature. (iii) Ethanol, catalytic glacial acetic acid, MW, 8–10 min, 350 W.

substituted aryloxy-1-phenyl-1H-pyrazole-4-carbaldehydes **3a–d** were subjected to base catalysed Claisen–Schmidt condensation reaction with 4-Fluoro acetophenone **4** generating the required (*E*)-1-(4-fluorophenyl)-3-(3-methyl-5-substituted aryloxy-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones **5a–d**. Finally pyrazolyl-pyrazolines **7a–1** were obtained by the condensation of **5a–d** and substituted phenyl hydrazine hydrochlorides **6a–c** in ethanol containing catalytic amount of glacial acetic acid under microwave irradiation at 350 W power level for 8–10 min.

Table 1

| In vitro antimicrobia | l activity (MIC, | µg/mL) of | compounds | 7a—1. |
|-----------------------|------------------|-----------|-----------|-------|
|-----------------------|------------------|-----------|-----------|-------|

| Comp. | Gram positive bacteria |       |       | Gram negative bacteria |       | Fungi |                    |       |
|-------|------------------------|-------|-------|------------------------|-------|-------|--------------------|-------|
|       | S.P.                   | B.S.  | C.T.  | E.C.                   | S.T.  | V.C.  | C.A.               | A.F.  |
|       | MTCC                   | MTCC  | MTCC  | MTCC                   | MTCC  | MTCC  | MTCC               | MTCC  |
|       | 1936                   | 441   | 449   | 443                    | 98    | 3906  | 227                | 3008  |
| 7a    | 500                    | 500   | 500   | 200                    | 250   | 125   | 1000               | 250   |
| 7b    | 500                    | 250   | 250   | 500                    | 200   | 125   | 250                | >1000 |
| 7c    | 100                    | 200   | 200   | 500                    | 500   | 200   | 1000               | >1000 |
| 7d    | 200                    | 250   | 500   | 200                    | 200   | 250   | 250                | 1000  |
| 7e    | 500                    | 250   | 250   | 250                    | 200   | 250   | 1000               | 500   |
| 7f    | 200                    | 100   | 200   | 100                    | 100   | 250   | 250                | 500   |
| 7g    | 100                    | 500   | 250   | 500                    | 250   | 200   | 200                | >1000 |
| 7h    | 500                    | 500   | 125   | 200                    | 200   | 500   | 500                | >1000 |
| 7i    | 125                    | 62.5  | 200   | 500                    | 500   | 100   | 500                | 250   |
| 7j    | 250                    | 500   | 250   | 200                    | 250   | 250   | 1000               | 100   |
| 7k    | 250                    | 200   | 500   | 100                    | 200   | 500   | 250                | 1000  |
| 71    | 500                    | 100   | 500   | 500                    | 500   | 500   | 500                | 250   |
| Α     | 100                    | 250   | 250   | 100                    | 100   | 100   | n. t. <sup>a</sup> | n. t. |
| В     | 10                     | 100   | 50    | 10                     | 10    | 10    | n. t.              | n. t. |
| С     | 50                     | 50    | 50    | 50                     | 50    | 50    | n. t.              | n. t. |
| D     | 25                     | 50    | 100   | 25                     | 25    | 25    | n. t.              | n. t. |
| E     | n. t.                  | n. t. | n. t. | n. t.                  | n. t. | n. t. | 100                | 100   |
| F     | n. t.                  | n. t. | n. t. | n. t.                  | n. t. | n. t. | 500                | 100   |

S.P.: Streptococcus pneumoniae, B.S.: Bacillus subtilis, C.T.: Clostridium tetani, E.C.: Escherichia coli S.T.: Salmonella typhi, V.C.: Vibrio cholerae, C.A.: Candida albicans, A.F.: Aspergillus fumigatus, MTCC: Microbial Type Culture Collection. A: Ampicillin, B: Norfloxacin, C: Chloramphenicol, D: Ciprofloxacin, E: Nystatin, F: Griseofulvin. The bold values indicate comparable/superior potency as compared to the reference drugs.

#### <sup>a</sup> n.t.: not tested.

#### 3. Pharmacology

#### 3.1. In vitro antimicrobial activity

The synthesized pyrazolylpyrazoline derivatives **7a–1** were evaluated for their antimicrobial activity by broth micro dilution method according to National Committee for Clinical Laboratory Standards (NCCLS) [39]. The compounds were screened for antibacterial activity employing three Gram positive (*Clostridium tetani* MTCC 449, *Bacillus subtilis* MTCC 441, and *Streptococcus pneumoniae* MTCC 1936) and three Gram negative (*Escherichia coli* MTCC 443, *Salmonella typhi* MTCC 98 and *Vibrio cholerae* MTCC 3906) bacteria against ampicillin, norfloxacin, ciprofloxacin and chloramphenicol as the reference drugs. Antifungal activity was screened against two fungal species (*Candida albicans* MTCC 227 and *Aspergillus fumigats* MTCC 3008) where nystatin and griseofulvin were used as the standard drugs. The result of the antimicrobial screening data is shown in Table 1.

#### 3.2. In vitro antituberculosis activity

A primary *in vitro* antituberculosis activity of novel pyrazolylpyrazolines **7a–1** was conducted at 250  $\mu$ g/mL against *M. tuberculosis* H37Rv stain by using Lowensteine–Jensen medium as described by Rattan [40]. The obtained result is presented in Table 2 in the form of % inhibition. Rifampicin and Isoniazid were employed as the standard drugs.

#### Table 2

*In vitro* antituberculosis activity (% inhibition) of compounds **7a–1** against *M. tuberculosis* H37Rv (at concentration 250  $\mu$ g/mL).

| Comp. | % Inhibition | Comp.      | % Inhibition |
|-------|--------------|------------|--------------|
| 7a    | 90           | 7h         | 96           |
| 7b    | 56           | 7i         | 74           |
| 7c    | 56           | 7j         | 10           |
| 7d    | 65           | 7k         | 94           |
| 7e    | 91           | 71         | 22           |
| 7f    | 52           | Rifampicin | 98           |
| 7g    | 40           | Isoniazid  | 99           |

The bold values indicate comparable/superior potency as compared to the reference drugs.

Download English Version:

https://daneshyari.com/en/article/1395594

Download Persian Version:

https://daneshyari.com/article/1395594

Daneshyari.com