Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Original article

3D-QSAR studies on the inhibitors of AP-1 and NF- κ B mediated transcriptional activation

Jin Qin^a, Huanxiang Liu^b, Jiazhong Li^a, Yueying Ren^a, Xiaojun Yao^{*,a}, Mancang Liu^a

^a Department of Chemistry, Lanzhou University, Lanzhou 730000, China ^b School of Pharmacy, Lanzhou University, Lanzhou 730000, China

ARTICLE INFO

Article history: Received 26 January 2008 Received in revised form 4 December 2008 Accepted 8 December 2008 Available online 16 December 2008

Keywords: 3D-QSAR AP-1 NF-κB Transcriptional activation Anti-inflammatory

ABSTRACT

Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of 68 inhibitors of AP-1 and NF- κ B mediated transcriptional activations. The CoMFA model produced statistically significant results with the cross-validated q^2 of 0.594 and the conventional correlation coefficient r^2 of 0.968. The best CoMSIA model was obtained by the combination use of steric, electrostatic, hydrogen-bond donor and acceptor fields. The corresponding q^2 and r^2 of CoMSIA model were 0.703 and 0.932, respectively. From the cross-validated results, it can be seen that the CoMSIA model has a better predictive ability than CoMFA model due to the importance of the hydrogen bonds for the activity of these inhibitors. The predictive abilities of the two models were further validated by a test set of 15 compounds. The models gave predicted correlation coefficient r_{pred}^2 of 0.891 for CoMFA model and 0.810 for CoMSIA model. Based on the above results, we identified the key structural features that may help to design potent inhibitors with improved activities: (1) the NH linker at the position R₄ acts as important hydrogen-bond donor and any group on phenyl or 2-thienyl ring of R₁ substituent decreases inhibitory activity, (2)further structural modification of compound **50** on the phenyl ring of the quinazoline ring considering steric, electrostatic and hydrogen-bond acceptor properties will influence the inhibitory activity.

© 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

In certain autoimmune diseases and chronic inflammatory states, the continuous activation of T-lymphocytes (T-cells) leads to a self-perpetuating destruction of normal tissues or organs [1]. This activation initiates a cascade of events that result in the overproduction of certain transcription factors [2] and proinflammatory cytokines [3,4]. Two important transcription factors, nuclear factor- κ binding (NF- κ B) and activator protein-1 (AP-1), control the production of many cytokines and are relevant to immunoinflammatory diseases [5-8]. Therefore, modulation of either one or both of these transcription factors should lead to suppression of cytokine levels and represent attractive targets for the prevention of immunoinflammatory diseases [9]. As these two transcription factors are regulated by distinct signaling pathway involving several proteins, many key factors involved in their activation pathway can be the targets for drug design [10]. There are many reports about inhibitors of NF-κB or AP-1 transcriptional activation [11–17], but very few compounds are known to inhibit both the

AP-1 and NF-κB mediated transcriptional activation [10]. Recently, Palanki et al. designed a series of novel compounds (Table 1) and tested their activity in the transfected human Jurkat T-cells [18–22]. These compounds could interfere with cyclosporin-resistant CD28 co-stimulation as well as CD3-mediated signaling pathway [10], which were required both for the transcriptional activation of AP-1 and NF-κB [23]. In order to design more compounds with desired activity, it is very necessary and useful to investigate the quantitative structure–activity relationships (QSARs) of these known inhibitors that can both inhibit the transcriptional activation of AP-1 and NF-κB.

Nowadays, three-dimensional quantitative structure–activity relationship (3D-QSAR) approaches, such as comparative molecular field analysis (CoMFA) [24] and comparative molecular similarity analysis (CoMSIA) [25,26] have been widely used in drug design [27–29]. The contour maps obtained from these models could not only help us to understand the quantitative relationship between the molecular structures and their activity but also can help to design new potent inhibitors with desired activity. In this work, 3D-QSAR models were built based on a series inhibitors of AP-1 and NF-kB mediated transcriptional activation [22,23] using CoMFA and CoMSIA methods.

^{*} Corresponding author. Tel.: +86 931 891 2578; fax: +86 931 891 2582. *E-mail address:* xjyao@lzu.edu.cn (X. Yao).

^{0223-5234/\$ –} see front matter @ 2009 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.ejmech.2008.12.006

Table 1

Structures and biological activities of the compounds used in training and test sets.

	1–45				46–68		
Compound	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	pIC ₅₀
1 ^a	CF ₃	Me	Н	Н	CO ₂ Et		6.000
2	Me	Me	Н	Н	CO ₂ Et		4.796
3	Et	Me	Н	Н	CO ₂ Et		5.000
4 ^a	t-Bu	Me	Н	Н	CO ₂ Et		6.000
5	SMe	Me	Н	Н	CO ₂ Et		6.699
6	Phenyl 2 Thionul	Me	H	Н	CO ₂ Et		7.000
/ ea	2-IIIIeIIyi 4 Duridul	Mo	н u	н u			7.099
0 9	2 6-Dichloro-4-Pyridyl	Me	н	н	CO ₂ Et		5 699
10	3-Ouinolinyl	Me	н	н	CO ₂ Et		5.000
10	4-(2-Methyl)-thiazolyl	Me	н	н	CO ₂ Et		5.097
12	1-(3.5-Dimethyl)-	Me	Н	Н	CO ₂ Et		5.000
	pyrazolyl				-		
13 ^a	4-Methoxy-phenyl	Me	Н	Н	CO ₂ Et		6.046
14	3-Methoxy-phenyl	Me	Н	Н	CO ₂ Et		5.301
15	4-Fluoro-phenyl	Me	Н	Н	CO ₂ Et		6.155
16 ^a	4-Chloro-phenyl	Me	Н	Н	CO ₂ Et		6.523
17	4-Trifluoro-methyl-	Me	Н	Н	CO ₂ Et		6.398
103	phenyl				60 F.		0.455
18"	3-Bromo-phenyl	Me	н	Н	CO ₂ Et		6.155
19	3-Nitro-pnenyi	Me	н	н	CO ₂ Et		5.155
20 21ª	5 Mothyl 2 thiopyl	Mo	н u	н u	CO Et		7.000
21	5-Chloro-2-thienvl	Me	н	н	CO ₂ Et		6 5 2 3
22	2-Benzo-thienvl	Me	н	н	CO ₂ Et		5 398
24	2-Furanovl	Me	н	н	CO ₂ Et		6.699
25	Cyclopropyl	Me	Н	Н	CO ₂ Et		6.000
26	2-(Cyclo-hex-2-enyl- methyl)	Me	Н	Н	CO ₂ Et		5.699
27	3,5-Dichloro-phenyl	Me	Н	Н	CO ₂ Et		6.523
28 ^a	Benzyl	Me	Н	Н	CO ₂ Et		5.155
29	Phenoxy	Me	Н	Н	CO ₂ Et		4.824
30	2-Phenyl-thio	Me	Н	Н	CO ₂ Et		6.000
31	2-Phenyl-sulfonyl	Me	Н	Н	CO ₂ Et		5.000
32	Phenyl	Me	Н	Me	CO ₂ Et		5.699
33ª	Phenyl	Me	Н	Ac	CO ₂ Et		5.398
34	2-Thienyl	Me	н	Me	CO ₂ Et		6.000
35	4-Fluoro-phenyl	Me	н	Ne	CO ₂ Et		5.523
30 27	EL CE-	Mo	Н	іме ц	CO ₂ El		5.000
38	CF ₂	Phenyl	н	н	CO ₂ Et		4 699
30 ^a	CF ₂	Н	н	н	CO ₂ Et		5.000
					Me		5.000
40	2-Thienyl	Me	Н	н			6.523
41	2 Thiopyl	Mo	п	11			5 201
41	2-IIIIeliyi	IVIC	11	11	Me		5.501
42	2-Thienyl	Me	Н	Н	N N		6.699
43 ª	2-Thienyl	Me	Н	Н			6.699
44	2-Thienyl	Me	н	н	N N O		6.523

able 1 ((continued)	

ubie 1 (00)							
Compound	R ₁	R ₂	R_3	R_4	R ₅	R ₆	pIC ₅₀
45	2-Thienyl	Me	Н	Н	0 N		6.699
46 47 48 ^a	2-Thienyl Phenyl CF ₃					5.014	7.222 7.000 7.000
49 50 51 ^a 52	2-Thienyl 2-Thienyl 2-Thienyl 2-Thienyl					5-OMe 6-OMe 7-OMe 8-OMe	8.097 8.523 7.699 7.301
53 54	2-Thienyl 2-Thienyl					6,7-Di-OMe 6,7,8-Tri- OMe	7.301 7.398
55 56 57 ^a 58	2-Thienyl 2-Thienyl 2-Thienyl 2-Thienyl					5-F 6-Cl 5-Me 7-(<i>N</i> -	7.301 7.699 7.699 6.699
59 60 61	2-Thienyl CF ₃ CF ₃					morpholyl) 7-(NMe ₂) 5-OMe 6-OMe	7.398 8.000 7.523
62 63 64	CF ₃ CF ₃ CF ₃ CF ₃					5-Me 6-SMe 6-SOMe 6-SO-Me	6.398 7.097 6.000
66 67 ^a	CF ₃ CF ₃ CF ₃					6-OH 7-(1- Piperidyl)	7.000 6.699
68	CF ₃					7-(NMe ₂)	7.699

^a Test set compound.

2. Materials and methods

2.1. Data sets

In this study, the involved 68 compounds were taken from the works of Palanki et al. [22,23] and their structures were listed in Table 1. The in vitro inhibitory activity (IC_{50}) was transformed to negative logarithmic units marked as pIC₅₀ in the CoMFA and CoMSIA analysis. The data set was divided into a training set (53 compounds) to generate the 3D-QSAR models and a test set (the rest 15 compounds) to evaluate the predictive ability of the developed models (shown in Table 1). In addition, the compounds in the test set were considered to cover the wide range of the activity in the whole data set (Fig. 1).

2.2. Molecular modeling and alignment

Molecular modeling and statistical analysis were performed using the molecular modeling package SYBYL 6.9 [30]. Energy minimization of the molecular structure was performed using the Powell gradient algorithm with the Tripos force field [31] and Gasteiger–Hückel charge [32]. The lowest energy conformation was used to perform 3D-QSAR calculations.

Because the bioactive conformations of these inhibitors were not known, the most potent compound **50** was chosen as the template for alignment. The reference atoms in the compound **50** for alignment are shown in Fig. 2A. Each compound was aligned to the template using the Align Database function due to its easy implementation and effectiveness. The aligned compounds are displayed in Fig. 2B.

2.3. CoMFA and CoMSIA models

The CoMFA descriptors, steric (Lennard–Jones 6–12 potential) and electrostatic (Coulomb potential) fields energies between the probe

Download English Version:

https://daneshyari.com/en/article/1396827

Download Persian Version:

https://daneshyari.com/article/1396827

Daneshyari.com