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a b s t r a c t

Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis
(CoMSIA) were performed on a series of 68 inhibitors of AP-1 and NF-kB mediated transcriptional
activations. The CoMFA model produced statistically significant results with the cross-validated q2 of
0.594 and the conventional correlation coefficient r2 of 0.968. The best CoMSIA model was obtained by
the combination use of steric, electrostatic, hydrogen-bond donor and acceptor fields. The corresponding
q2 and r2 of CoMSIA model were 0.703 and 0.932, respectively. From the cross-validated results, it can be
seen that the CoMSIA model has a better predictive ability than CoMFA model due to the importance of
the hydrogen bonds for the activity of these inhibitors. The predictive abilities of the two models were
further validated by a test set of 15 compounds. The models gave predicted correlation coefficient rpred

2 of
0.891 for CoMFA model and 0.810 for CoMSIA model. Based on the above results, we identified the key
structural features that may help to design potent inhibitors with improved activities: (1) the NH linker
at the position R4 acts as important hydrogen-bond donor and any group on phenyl or 2-thienyl ring of
R1 substituent decreases inhibitory activity, (2)further structural modification of compound 50 on the
phenyl ring of the quinazoline ring considering steric, electrostatic and hydrogen-bond acceptor prop-
erties will influence the inhibitory activity.

� 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

In certain autoimmune diseases and chronic inflammatory
states, the continuous activation of T-lymphocytes (T-cells) leads to
a self-perpetuating destruction of normal tissues or organs [1]. This
activation initiates a cascade of events that result in the over-
production of certain transcription factors [2] and proinflammatory
cytokines [3,4]. Two important transcription factors, nuclear factor-
k binding (NF-kB) and activator protein-1 (AP-1), control the
production of many cytokines and are relevant to immunoin-
flammatory diseases [5–8]. Therefore, modulation of either one or
both of these transcription factors should lead to suppression of
cytokine levels and represent attractive targets for the prevention
of immunoinflammatory diseases [9]. As these two transcription
factors are regulated by distinct signaling pathway involving
several proteins, many key factors involved in their activation
pathway can be the targets for drug design [10]. There are many
reports about inhibitors of NF-kB or AP-1 transcriptional activation
[11–17], but very few compounds are known to inhibit both the

AP-1 and NF-kB mediated transcriptional activation [10]. Recently,
Palanki et al. designed a series of novel compounds (Table 1) and
tested their activity in the transfected human Jurkat T-cells [18–22].
These compounds could interfere with cyclosporin-resistant CD28
co-stimulation as well as CD3-mediated signaling pathway [10],
which were required both for the transcriptional activation of AP-1
and NF-kB [23]. In order to design more compounds with desired
activity, it is very necessary and useful to investigate the quanti-
tative structure–activity relationships (QSARs) of these known
inhibitors that can both inhibit the transcriptional activation of
AP-1 and NF-kB.

Nowadays, three-dimensional quantitative structure–activity
relationship (3D-QSAR) approaches, such as comparative molecular
field analysis (CoMFA) [24] and comparative molecular similarity
analysis (CoMSIA) [25,26] have been widely used in drug design
[27–29]. The contour maps obtained from these models could not
only help us to understand the quantitative relationship between
the molecular structures and their activity but also can help to
design new potent inhibitors with desired activity. In this work, 3D-
QSAR models were built based on a series inhibitors of AP-1 and
NF-kB mediated transcriptional activation [22,23] using CoMFA and
CoMSIA methods.
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2. Materials and methods

2.1. Data sets

In this study, the involved 68 compounds were taken from the
works of Palanki et al. [22,23] and their structures were listed in
Table 1. The in vitro inhibitory activity (IC50) was transformed to
negative logarithmic units marked as pIC50 in the CoMFA and
CoMSIA analysis. The data set was divided into a training set (53
compounds) to generate the 3D-QSAR models and a test set (the
rest 15 compounds) to evaluate the predictive ability of the
developed models (shown in Table 1). In addition, the compounds
in the test set were considered to cover the wide range of the
activity in the whole data set (Fig. 1).

2.2. Molecular modeling and alignment

Molecular modeling and statistical analysis were performed
using the molecular modeling package SYBYL 6.9 [30]. Energy
minimization of the molecular structure was performed using the
Powell gradient algorithm with the Tripos force field [31] and
Gasteiger–Hückel charge [32]. The lowest energy conformation was
used to perform 3D-QSAR calculations.

Because the bioactive conformations of these inhibitors were
not known, the most potent compound 50 was chosen as the
template for alignment. The reference atoms in the compound 50
for alignment are shown in Fig. 2A. Each compound was aligned to
the template using the Align Database function due to its easy
implementation and effectiveness. The aligned compounds are
displayed in Fig. 2B.

2.3. CoMFA and CoMSIA models

The CoMFA descriptors, steric (Lennard–Jones 6–12 potential) and
electrostatic (Coulomb potential) fields energies between the probe

Table 1
Structures and biological activities of the compounds used in training and test sets.
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Compound R1 R2 R3 R4 R5 R6 pIC50

1a CF3 Me H H CO2Et 6.000
2 Me Me H H CO2Et 4.796
3 Et Me H H CO2Et 5.000
4a t-Bu Me H H CO2Et 6.000
5 SMe Me H H CO2Et 6.699
6 Phenyl Me H H CO2Et 7.000
7 2-Thienyl Me H H CO2Et 7.699
8a 4-Pyridyl Me H H CO2Et 5.222
9 2,6-Dichloro-4-Pyridyl Me H H CO2Et 5.699
10 3-Quinolinyl Me H H CO2Et 5.222
11 4-(2-Methyl)-thiazolyl Me H H CO2Et 5.097
12 1-(3,5-Dimethyl)-

pyrazolyl
Me H H CO2Et 5.000

13a 4-Methoxy-phenyl Me H H CO2Et 6.046
14 3-Methoxy-phenyl Me H H CO2Et 5.301
15 4-Fluoro-phenyl Me H H CO2Et 6.155
16a 4-Chloro-phenyl Me H H CO2Et 6.523
17 4-Trifluoro-methyl-

phenyl
Me H H CO2Et 6.398

18a 3-Bromo-phenyl Me H H CO2Et 6.155
19 3-Nitro-phenyl Me H H CO2Et 5.155
20 3-Thienyl Me H H CO2Et 7.000
21a 5-Methyl-2-thienyl Me H H CO2Et 6.699
22 5-Chloro-2-thienyl Me H H CO2Et 6.523
23 2-Benzo-thienyl Me H H CO2Et 5.398
24 2-Furanoyl Me H H CO2Et 6.699
25 Cyclopropyl Me H H CO2Et 6.000
26 2-(Cyclo-hex-2-enyl-

methyl)
Me H H CO2Et 5.699

27 3,5-Dichloro-phenyl Me H H CO2Et 6.523
28a Benzyl Me H H CO2Et 5.155
29 Phenoxy Me H H CO2Et 4.824
30 2-Phenyl-thio Me H H CO2Et 6.000
31 2-Phenyl-sulfonyl Me H H CO2Et 5.000
32 Phenyl Me H Me CO2Et 5.699
33a Phenyl Me H Ac CO2Et 5.398
34 2-Thienyl Me H Me CO2Et 6.000
35 4-Fluoro-phenyl Me H Me CO2Et 5.523
36 Et Me H Me CO2Et 5.000
37 CF3 Me Me H CO2Et 5.000
38 CF3 Phenyl H H CO2Et 4.699
39a CF3 H H H CO2Et 5.000

40 2-Thienyl Me H H

N

O

Me

6.523

41 2-Thienyl Me H H CN 5.301

42 2-Thienyl Me H H

N

N N
N

Me

6.699

43a 2-Thienyl Me H H O N

Me

6.699

44 2-Thienyl Me H H

N
N O

Me

6.523

Table 1 (continued)

Compound R1 R2 R3 R4 R5 R6 pIC50

45 2-Thienyl Me H H

O N
6.699

46 2-Thienyl 7.222
47 Phenyl 7.000
48a CF3 7.000
49 2-Thienyl 5-OMe 8.097
50 2-Thienyl 6-OMe 8.523
51a 2-Thienyl 7-OMe 7.699
52 2-Thienyl 8-OMe 7.301
53 2-Thienyl 6,7-Di-OMe 7.301
54 2-Thienyl 6,7,8-Tri-

OMe
7.398

55 2-Thienyl 5-F 7.301
56 2-Thienyl 6-Cl 7.699
57a 2-Thienyl 5-Me 7.699
58 2-Thienyl 7-(N-

morpholyl)
6.699

59 2-Thienyl 7-(NMe2) 7.398
60 CF3 5-OMe 8.000
61 CF3 6-OMe 7.523
62 CF3 5-Me 6.398
63 CF3 6-SMe 7.097
64 CF3 6-SOMe 6.000
65 CF3 6-SO2Me 5.046
66 CF3 6-OH 7.000
67a CF3 7-(1-

Piperidyl)
6.699

68 CF3 7-(NMe2) 7.699

a Test set compound.
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