

European Journal of Medicinal Chemistry 44 (2009) 2265-2269

http://www.elsevier.com/locate/ejmech

Short communication

Synthesis and antimicrobial activity of new 1-alkyl/cyclohexyl-3, 3-diaryl-1'-methylspiro[azetidine-2,3'-indoline]-2',4-diones

Girija S. Singh*, Patrick Luntha

Department of Chemistry, University of Botswana, Private Bag 0022, Gaborone, Botswana
Received 18 March 2008; received in revised form 10 June 2008; accepted 13 June 2008
Available online 21 June 2008

Abstract

The paper describes the synthesis of new 1-alkyl/cyclohexyl-3,3-diaryl-1'-methylspiro[azetidine-2,3'-indoline]-2',4-diones from the reactions of the 2-diazo-1,2-diarylethanones with 1-methyl-3-(alkyl/cyclohexylimino)indolin-2-ones under thermal condition. The compounds, characterized by satisfactory analytical and spectral (IR, ¹H NMR and ¹³C NMR) data, have been screened for their antibacterial and antifungal activities. © 2008 Elsevier Masson SAS. All rights reserved.

Keywords: Spiroazetidinones; Diarylketenes; 3-Iminoindolin-2-ones; Cycloaddition; Antimicrobial activity

1. Introduction

The 2-azetidinones, commonly known as β -lactams, are among the most useful azaheterocyclic compounds from both synthetic and medicinal chemistry points of views. Most of the researches up to early 90s focused on synthesis of 2-azetidinones and study of their antibacterial property [1-3]. Later researches have shown some other useful biological activities of such compounds, e.g. cholesterol absorption inhibition, enzymes inhibition, hypoglycemic, and anticancer activity [4,5]. Ezetimibe, a monocyclic 2-azetidinone, is now in clinical use as a cholesterol absorption inhibitor [6]. Recent years have shown extensive investigation on use of 2-azetidinones as synthons for diverse types of biologically important compounds such as β-aminoacids, γ-aminoalcohols, azetidines, pyrimidones, etc. [7–11]. However, most of these studies are undertaken either on monocyclic or fused bicyclic 2-azetidinones. It is due to the fact that the first 2-azetidinone-containing antibiotics penicillin and cephalosporin had fused bicyclic skeletons whereas monobactams and nocardicins, observed in late 70s and early 80s to have antibacterial activity, had monocyclic 2-azetidinone ring. The spiro-fused 2-azetidinones constitute a scarce class of compounds. There are only a few reports in the literature on the synthesis, reactivity and biological activity of such 2-azetidinones [12–27]. The diverse types of biological activities associated with indoline-2,3-dione (isatin) derivatives and their interesting chemistry [28–31] prompted us to synthesize 2-azetidinones spiro-fused to 1-methylindo-lin-2-one ring and study its antimicrobial activity. Accordingly, the present paper reports the synthesis and antimicrobial activity of 10 new 1-alkyl/cyclohexyl-3,3-diaryl-1'-methylspiro [azetidine-2,3'-indoline]-2',4-diones from the reactions of 1-methyl-3-(alkyl/cyclohexylimino)indolin-2-ones with three 2-diazo-1,2-diarylethanones — 2-diazo-1,2-diphenylethanone, 2-diazo-1,2-bis(4-methylphenyl)ethanone and 2-diazo-1,2-bis(4-methoxyphenyl)ethanone.

There are several methods reported in the literature for the synthesis of 2-azetidinones [9,10]. However, the Staudinger ketene—imine cycloaddition reaction is one of the most common methods to synthesize 2-azetidinones [32]. It involves reaction of an imine with acid chloride in the presence of a tertiary base, usually triethylamine at temperatures ranging from -78 °C to reflux temperature in various solvents such as dichloromethane, acetonitrile, toluene, etc. (Scheme 1). In the present study, diarylketenes are generated *in situ* by thermal decomposition of α -diazoketones because their reactions appeared versatile, simpler to carry out requiring

^{*} Corresponding author. Tel.: +267 3552501; fax: +267 3552836. *E-mail address*: singhgs@mopipi.ub.bw (G.S. Singh).

Scheme 1. The Staudinger method for the preparation of 2-azetidinones.

no temperature control, no acid or base treatment and also no water work-up.

2. Results and discussion

2.1. Chemistry

An equimolar reaction of 2-diazo-1,2-diphenylethanone (1a) with 1-methyl-3-(isopropylimino)indolin-2-one (2a) in dry benzene afforded a white crystalline compound characterized as 1-isopropyl-1'-methyl-3,3-diphenylspiro[azetidine-2,3'-indoline]-2',4-dione (3a) on the basis of satisfactory analytical and spectral data (see Section 4).

Similar reactions of 2-diazo-1,2-diphenylethanone (1a) with 1-methyl-3-(*N*-substituted imino)indolin-2-ones (2b-d) also afforded spiro(azetidin-2,3'-indoline)-2',4-diones (3b-d) in good yields (Table 1). The reactions of 2-diazo-1,2-bis(4-methylphenyl)ethanone (1b) and of 2-diazo-1,2-bis(4-methoxyphenyl)ethanone (1c) were carried out in a similar manner with 1-methyl-3-(alkylimino)indolin-2-ones 2a-d and with 2a and b, respectively, which yielded new spiro(azetidin-2,3'-indoline)-2',4-diones (3e-h) and (3i,j), respectively, in good to excellent yields (Table 1) which have been characterized on the basis of satisfactory analytical and spectral data discussed briefly in the succeeding paragraph.

The IR spectra of compounds $3\mathbf{a}-\mathbf{j}$ showed two strong absorption bands — one at around 1745—1760 and the other at around 1720—1730 cm⁻¹ corresponding to two lactam carbonyl groups. The ¹³C NMR spectra showed the two carbonyl carbons at around δ 173 and 169 ppm. In the IR and ¹³C spectra of the products $3\mathbf{a}-\mathbf{j}$, the disappearance of the band at around 1640 cm⁻¹ corresponding to azomethine linkage and of signal at around δ 155 ppm corresponding to azomethine carbon, respectively, in substrates $2\mathbf{a}-\mathbf{d}$ confirmed the reaction at azomethine linkage of the substrates forming spiro[azetidine-2,3'-indoline]-2',4-diones. It is noteworthy to mention

Table 1 Physical data of the spiro[azetidin-2,3'-indoline]-2',4-diones **3a**—**j**

Compound number	Ar	R	Molecular formula	M.p. (°C)	Yield (%)
3a	Ph	CHMe ₂	$C_{26}H_{24}N_2O_2$	200-202	69
3b	Ph	CHPh ₂	$C_{36}H_{28}N_2O_2$	236-237	74
3c	Ph	CH(Me)Ph	$C_{31}H_{26}N_2O_2$	162-165	60
3d	Ph	Cyclohexyl	$C_{29}H_{28}N_2O_2$	155-158	50
3e	$4-MeC_6H_4$	$CHMe_2$	$C_{28}H_{28}N_2O_2$	258 - 260	72
3f	$4-MeC_6H_4$	CHPh ₂	$C_{38}H_{32}N_2O_2$	194-195	78
3 g	$4-MeC_6H_4$	CH(Me)Ph	$C_{33}H_{30}N_2O_2$	214-216	68
3h	$4-MeC_6H_4$	Cyclohexyl	$C_{31}H_{32}N_2O_2$	180 - 182	52
3i	4-MeOC ₆ H ₄	$CHMe_2$	$C_{28}H_{28}N_2O_4$	255-258	77
3j	$4\text{-MeOC}_6\text{H}_4$	$CHPh_2$	$C_{38}H_{32}N_2O_4$	204-206	80

that the 1H NMR spectra of spiro-compounds 3c and g with α -phenylmethyl group on azetidinone ring nitrogen showed the signals in sets of two (approximately in the ratio of 9:1) indicating two spatial arrangement of the groups in these compounds. The N-methyl and methine signals for minor configuration appeared slightly downfield than the signals for these protons in major configurations whereas the signal for methyl proton [CH(Me)Ph] appeared slightly upfield. The mass spectra of the products recorded showed the quasimolecular ions formed by addition of sodium $(M+Na)^+$.

The mechanism of formation of the product, which is similar to the one proposed earlier for such reactions [28], is shown in Scheme 2. Thermal decomposition of the 2-diazoketones leads to the formation of α -ketocarbenes with extrusion of nitrogen. The α -ketocarbenes are known to undergo the Wolff rearrangement leading to *in situ* generation of ketenes [33]. The reaction of imines with ketenes may lead to the formation of a *zwitterionic* intermediate, which cyclizes to give the product 2-azetidinones.

2.2. Pharmacology

All the synthesized compounds were screened for their antibacterial and antifungal activities (Table 2). The concentrations ranging from 1.0 to 100.0 µg mL⁻¹ of the test compound were used for the screening. The bacterial strains used were Gram-(+) Bacillus subtilis, Staphylococcus aureus and Gram-(-) Escherichia coli and Pseudomonas aeruginosa. The antifungal screening was done on Candida albicans and on Saccharomyces cerevisiae. Of the 10 compounds screened against bacterial strains, four compounds showed activity on E. coli (3d: MIC = $100 \, \mu \text{g mL}^{-1}$, 3e: MIC = $10 \, \mu \text{g mL}^{-1}$, **3h**: MIC = $100 \,\mu\text{g mL}^{-1}$, **3j**: MIC = $50 \,\mu\text{g mL}^{-1}$) whereas only one compound showed activity on P. aeruginosa (3e: $MIC = 50 \,\mu g \,mL^{-1}$). None of the compounds showed activity on Gram-(+) strains up to the maximum concentration of 100 µg mL⁻¹ used in the study. These results are in agreement with previous studies on monocyclic 2-azetidinones which reported higher activity of such 2-azetidinones against Gram-(-) bacteria in comparison to that against Gram-(+) bacteria [34–36]. Although none of the compounds showed activity up to $100 \ \mu g \ mL^{-1}$ against *C. albicans* six compounds (**3a**: MIC = $50 \ \mu g \ mL^{-1}$, **3b**. MIC = $10 \ \mu g \ mL^{-1}$, **3e**: MIC = $\mu g \ mL^{-1}$, 50, **3f**: MIC = $100 \ \mu g \ mL^{-1}$, **3i**: $MIC = 50 \ \mu g \ mL^{-1}$, **3j**: $MIC = 50 \ \mu g \ mL^{-1}$) have been observed active on S. cerevisiae. Only compound 3e with two 4-methylphenyl groups and an isopropyl group on 2-azetidinone ring carbon and nitrogen, respectively, showed activity against three organisms out of five studied.

3. Conclusions

In conclusion, the paper reports the synthesis of spirocompounds containing 2-azetidinone and 1-methylindolin-2-one rings from the reactions of 1-methyl-3-(alkylimino) indolin-2-ones with three diarylketenes — diphenylketene,

Download English Version:

https://daneshyari.com/en/article/1397972

Download Persian Version:

 $\underline{https://daneshyari.com/article/1397972}$

Daneshyari.com