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2DCOS analysis of dynamic spectra, which can be approximated in the form of a polynomial function by
the least squares curve fitting method, is carried out. Curve fitting provides a practical way of condensing
a large spectral dataset in terms of a small number of fitting parameters and filtering out noise and
superfluous spectral intensity variations from the raw spectra. Pertinent features of the findings are
illustrated by using a simple simulated spectral data subjected to curve fitting with polynomials. Closed-

form analytical expressions for 2D correlation spectra are obtained from the polynomial functions used
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for the curve fitting and their Hilbert transform counterpart. Such analytical expressions provide useful
insight into the inner working of 2DCOS analysis, especially the role of slope and curvature of spectral
intensity variations, in determining the signs of cross peaks used in the interpretation of 2D spectra.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The basic methodology of generalized two-dimensional corre-
lation spectroscopy (2DCOS) is well established today [1—4]. Dy-
namic spectra, i.e., spectral intensity variations induced in response
to an external perturbation applied to the system, are examined
with the aid of complex cross correlation analysis to generate 2D
maps defined by two independent spectral axes. It is often pointed
out that apparent spectral resolution is substantially enhanced by
spreading peaks along the second dimension. Furthermore, seem-
ingly convoluted spectral intensity variations are effectively sorted
out by using 2D correlation spectra. Synchronous 2D correlation
spectrum characterizes the coordinated or simultaneous responses,
and asynchronous spectrum reveals sequential or out of phase
nature of certain responses. A simple set of rules based on the signs
of cross peaks are used to interpret the responses of system con-
stituents to the perturbation.

Efficient numerical computational method makes it straight-
forward to obtain 2D correlation spectra from practical dynamic
spectra in the form of discretely sampled and digitized spectral
dataset [2,3]. The ease of generating 2D correlation spectra, along
with the general applicability of the technique to a very broad field
of science with various spectroscopic probes, perturbation
methods, and sample systems, has made 2DCOS a very popular data
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analysis tool [5—7]. Rigorous treatment of underlying mathematical
concept behind 2DCOS analysis, based on the classical theory of
time-series complex cross correlation using the Fourier transform
description of spectral intensity variations, is also available [1,8,9].
However, somewhat more intuitively understandable description
of 2DCOS concept is always desired.

2DCOS analysis of spectral intensity variations, which can be
adequately described in terms of polynomial functions, is explored
here. A simple least squares curve fitting method, for example, will
generate such a dataset based on polynomials from the raw spectral
data. Purpose of the 2DCOS analysis of polynomials is twofold.
Firstly, the fidelity of replicating 2D correlation spectra must be
examined when a model polynomial function instead the actual
spectra is used. In the accompanying paper appearing in this issue
[10], it is demonstrated that even a simple representation of dy-
namic spectra in terms of a quadratic polynomial can adequately
capture most of the pertinent feature of original spectral data to
generate useful 2D correlation spectra. The merit of condensing a
large spectral dataset in terms of a smaller number of fitting pa-
rameters is obvious. It is further expected that the properly con-
ducted least squares curve fitting operation should have an overall
positive effect by removing the noise and other superfluous con-
tributions, such as baseline fluctuations, from the original spectra.
Here the polynomial reconstruction of raw spectral data may be
viewed simply as the data pretreatment prior to the 2DCOS
analysis.

The second motivation behind this work is to obtain the explicit
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closed-form analytical expressions for 2D correlation spectra based
on the polynomials. In the past, explicit analytical solutions were
derived for spectral intensity variations having the waveforms of
sinusoids, exponential decays, and Lorentzian distributions [1,4].
Solutions to polynomials will be a useful addition to the list. Once
the analytical solutions are obtained in terms of a small set of model
parameters used in the polynomial fit, it is hoped to provide
valuable insight into the inner workings of how 2DCOS analysis
really operates. More specifically, how patterns of intensity varia-
tions defined by a set of parameters can be compared to each other
to support the rules commonly used in interpreting 2D correlation
spectra.

2. Model system

To illustrate the efficacy of the 2DCOS analysis based on poly-
nomial fitting, a simple simulation model system is considered.
Two parallel and independent first order reactions are assumed
with the rate constants of 0.2 and 0.1 min~".

Faster reaction: A—D k; =0.2 min~! (Scheme 1)

Slower reaction : C—B ky =0.1 min~! (Scheme 2)

Species A, B, C and D, respectively, have their corresponding
characteristic absorption bands at 1800, 1600, 1400 and 1200 cm ™,
each having a Lorentzian band profile with the half width at the half
height of 33 cm™L The evolution of the band intensities are then
observed for the initial 10 min. The resulting simulated spectra are
shown in Fig. 1a. Peak intensities of individual bands shown in
Fig. 1b follow the expected first order reaction profiles of ek,
1—e ket ekt and 1 — ekt

2D correlation spectra of the model reaction system are shown
in Fig. 1c and d. They are calculated by the well-established nu-
merical method [2]. Average spectrum is provided at the top and
side of each 2DCOS map as the reference. Synchronous spectrum
(Fig. 1c) depicts the intensity variations of the four bands associated
with the species and relationships between the decrease in the
reactants A and C and increase in the products B and D. The dif-
ference in the reaction rates is clearly manifested in the develop-
ment of asynchronous cross peaks in Fig. 1d. Spectral intensity
variations of species A and D occur earlier during the observation
interval compared to those of B and C. The consumption of reactant
and generation of product for each reaction scheme are completely
synchronized, such that no asynchronous cross peak is observed
between A and D bands or B and C. The results deduced from the
2DCOS analysis are consistent with the premise of the simulated
reaction model.

3. Continuous dynamic spectra and reduced perturbation
variable

3.1. Reference and dynamic spectra

2DCOS analysis nowadays is carried out almost exclusively with
digitally stored spectral data sampled discretely. Numerical
computation of 2D correlation spectra using a well-established
algorithm based on the discrete Hilbert transform method is a
standard practice in the field. However, it is sometimes useful to go
back to the early notations based on using continuous functions for
2DCOS analysis [1]. This situation is especially true for the detailed
mathematical analysis when explicit closed-form analytical ex-
pressions are conveniently available. Such was indeed the case for
2D correlation study of time-dependent IR dichroism signals
induced in a polymer film by sinusoidal dynamic deformation
[11-13].

Consider a set of spectra A(v,t) with the spectral variable »
measured under the influence of an external perturbation

represented by the variable t. The spectral variable can be wave-
number, frequency, wave length, etc., and the perturbation variable
can be temperature, time, concentration, etc. They will be referred
to, respectively, as wavenumber and time here for convenience. The
2D correlation analysis of A(»,t) is carried out within an explicitly
determined observation interval between tyi; and tpyax.

Dynamic spectra are given by

~ _ AW, t) —A@y) for tyin <t < tmax
A, ) {O otherwise M

with the reference spectrum A(v), which is taken as the time
average spectrum

Cmax
- 1

A(v) A(v, t)dt (2)

tmax — tmin
timin
Dynamic spectra are viewed as the manifestation of the devia-
tion from the reference state induced by the imposed perturbation.
For time t outside of the observation interval, the actual value of A(»,
t) may or may not be known. In contrast, because of the mathe-
matical consistency required for the correlation analysis, the value
of A(v, t) is set explicitly to zero outside of the observation interval.

3.2. 2D correlation spectra

We now introduce the dimensionless reduced perturbation
variable 6(t) as

t— (tmax+tmin)

o(t) = ——2— (3)
tmax — tmin

to replace the original perturbation variable t. This simple trans-

formation of variable makes the rest of the mathematical treatment

straightforward. The observation interval in terms of 0 is now

bound between —1 and 1, and Eq. (1) is rewritten as

. (AW, 0)—A@) for—1<0<1
A, 0) = {0 otherwise @

Choosing the time average as the reference spectrum in Eq. (2)
leads to the constraint to the dynamic spectra as

1
/ A, 6)do = 0 (5)
e

which becomes useful later.

Combining the previously derived results for the generalized
2DCOS [1,2] with this newly introduced reduced variable, syn-
chronous and asynchronous 2D correlation spectra ®(v,72) and
W(y1,v2) for the dynamic spectra are obtained as

1

2(1.02) =5 [ A, 040, 0)d0 (6)
A
1

W) =5 [ A, 0)-Hoa, 0)ds )
“1

and H(v, 6) is the Hilbert transform of A(v, 6) given by
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