Contents lists available at ScienceDirect

## Journal of Molecular Structure

journal homepage: http://www.elsevier.com/locate/molstruc

## The solid state structure of pyridinium hydrogen squarate

### Barbara Modec

Department of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia

#### ARTICLE INFO

Article history: Received 10 April 2015 Received in revised form 14 May 2015 Accepted 14 May 2015 Available online 17 June 2015

Keywords: Crystal structures Hydrogen bonds Stacking interactions Proton-transfer salts Oxocarbons Hydrogen squarate

#### ABSTRACT

The solvothermal reaction of  $(PyH)[MoOBr_4]$  ( $PyH^+ = pyridinium$  cation,  $C_5H_5NH^+$ ) with squaric acid  $(H_2Sq = 3,4-dihydroxy-3-cyclobutene-1,2-dione, H_2C_4O_4)$  in pyridine has inadvertently afforded apart from a dinuclear molybdenum(V) complex with a coordinated squarato dianion another product, a simple pyridinium salt of hydrogen squarate, (PyH)(HSq) (HSq<sup>-</sup> = hydrogen squarate, HC<sub>4</sub>O<sub>4</sub>). The salt crystallizes in the monoclinic space group  $P 2_1/c$  with a = 10.1061(9) Å, b = 11.0436(10) Å, c = 7.4497(7) Å and  $\beta = 103.188(2)^{\circ}$ . Its solid state structure consists of infinite chains made of HSq<sup>-</sup> ions linked via strong  $O-H\cdots O^-$  hydrogen bonds. The corresponding  $O\cdots O$  contacts are 2.5604(13) Å. The countercations, protonated pyridine molecules, are attached to these chains via  $N^+-H\cdots O^-$  hydrogen bonds. The X-ray structure analysis has revealed stacking arrangements of both ions with short interplanar spacings. Weak intermolecular interactions of the  $\pi \cdots \pi$  type between ions of the same charge and of the  $C-H\cdots O$  type between the oppositely charged ions were shown to play an important role in their packing.

© 2015 Elsevier B.V. All rights reserved.

#### 1. Introduction

Squaric acid (H<sub>2</sub>sq), 3,4-dihydroxy-3-cyclobutene-1,2-dione, is one of the most studied representatives of oxocarbon acids. Oxocarbon species which include besides a squarate dianion  $(C_4O_4^{2-})$ also deltate ( $C_3O_3^{2-}$ ), croconate ( $C_5O_5^{2-}$ ) and rhodizonate ( $C_6O_6^{2-}$ ) have symmetric  $\pi$ -systems with oxygen atoms involved in delocalization [1]. The structural formula of squaric acid is depicted in Scheme 1. The acid is a very strong diprotic acid with  $pK_1 = 1.2 - 1.7$ and  $pK_2 = 3.2-3.5$  [2,3]. Through the loss of protons from one or both of the OH groups, it forms salts which contain either a hydrogen squarate anion, throughout the text denoted as HSq<sup>-</sup>, or a squarate dianion, denoted as Sq<sup>2–</sup>. The acid and both of its anions are almost perfect flat species with  $\pi$ -conjugation of C–C and C–O bonds. All can participate in hydrogen-bonding interactions: whereas squarate dianion can only act as a strong hydrogen bond acceptor, the parent acid and its mononeutralized form, HSq<sup>-</sup> ion, are both potent donors and acceptors.

Recent research on the acid and its anions has been focused on their applications as active pharmaceutical ingredients [4–6], or fluorescent biomarkers with large second- and third-order nonlinear optical responses [7,8]. Their application in crystal engineering has also been reported [9,10]. Our interest in squarate ions

http://dx.doi.org/10.1016/j.molstruc.2015.05.056 0022-2860/© 2015 Elsevier B.V. All rights reserved. is due to their bridging function in multinuclear transition metal complexes. For instance,  $[Mo_2O_4(Py)_4(Sq)]$  and  $[Mo_4O_8(Sq)_4]^{4-}$ , a pair of molybdenum(V) complexes containing a metal-metal bonded  $\{Mo_{2}^{V}O_{4}\}^{2+}$  structural unit which were synthesized in our laboratory, contain squarato ligands engaged in a  $\mu_2$ -1,2bis(monodentate) coordination manner to a pair of metal atoms spanning either a short distance of ca. 2.5 Å or a significantly longer one, ca. 3.4 Å [11]. In the latter case, the metal ions bridged by the squarate belong to two different {Mo<sup>V</sup><sub>2</sub>O<sub>4</sub>}<sup>2+</sup> cores. One of the reactions produced apart from the anticipated metal complex a colourless crystalline material. The lack of colour spoke in favour either of the oxidation of metal to VI state or the formation of a simple salt of squaric acid [12]. Herein, a solid state structure of this product, pyridinium hydrogen squarate, is reported and compared with the structures of related compounds. Surprisingly, although a search on the CSD [13] has disclosed numerous structures of salts with the hydrogen squarate ion, it has shown no entry for the title compound. A variety of hydrogen-bonding patterns displayed by the monoanion can be classified into four basic groups. With the details of each being already presented in two reviews [10,14], only brief descriptions will be given. The solid state structures of the HSq<sup>-</sup> compounds contain either isolated ions or two, four or an infinite number of ions linked via strong O-H···O hydrogen bonds [15]. The majority of structures is dominated by a centrosymmetric (HSq<sup>-</sup>)<sub>2</sub> dimer which bears a strong resemblance to the dimer encountered among the structures of carboxylic acids [16].









E-mail address: barbara.modec@fkkt.uni-lj.si.



**Scheme 1.** The structural formula of squaric acid, H<sub>2</sub>Sq.

Whereas the assembly of four ions to produce a cyclic tetramer finds only a rare occurrence, the *catena* synthon represents the other principal arrangement of HSq<sup>-</sup> ions. Depending on the relative positions of the OH and O functions within the ion, two types of chains can be distinguished, 1,2-chains (known also as  $\alpha$ -chains) and 1,3-chains ( $\beta$ -chains). In 1,2-chains, the hydrogen bond acceptor is the O function which is in a vicinal position to OH. In 1,3chains, the acceptor is positioned diagonally opposite to the hydroxyl moiety.

#### 2. Experimental

#### 2.1. Preparation of pyridinium hydrogen squarate

A mixture of (PyH)[MoOBr<sub>4</sub>] (120 mg, 0.235 mmol), squaric acid (114 mg, 1.00 mmol) and pyridine (4 mL) was placed in a glass tube which was sealed and heated for 120 h in an electric oven maintained at 115 °C. The reaction vessel was allowed to cool slowly to room temperature. The vessel contained an orange solution and two solid phases: orange crystals of  $[Mo_2O_4(Py)_4(Sq)]$ ·2Py and colourless crystals of (PyH)(HSq) [11].

#### 2.2. X-ray crystallography

The crystal was mounted on the tip of a glass fibre with a small amount of silicon grease and transferred to a goniometer head. Crystallographic data were collected on a Bruker P4 diffractometer equipped with an SMART CCD system. Data processing was accomplished with the SAINT program [17]. Absorption correction was made using SADABS [18]. The coordinates of all non-hydrogen atoms were found via direct methods using the structure solution programme SHELXS [19]. All hydrogen atoms with the exception of H1n (on N1) and H1o (on O1) were placed at calculated positions (C-H = 0.93 Å) and were allowed to ride on their parent atoms. Hydrogen atoms H1n and H1o were located by means of a combination of least-squares refinement and difference Fourier maps in the SHELXL 97 programme [19] and were refined with isotropic displacement parameters. Figures depicting the structures were prepared by ORTEP [20] and Mercury [21]. Cell parameters and refinement results are summarized in Table 1.

#### 3. Results and discussion

The crystal structure of (PyH)(HSq) consists of hydrogen squarate anions and protonated pyridine molecules as countercations. The compound crystallizes in a monoclinic space group  $P 2_1/c$  with both ions residing on general positions. Their ORTEP drawings are shown in Fig. 1, and an exhaustive list of the geometric parameters of the HSq<sup>-</sup> ion is given in Table 2. The HSq<sup>-</sup> ion is nearly planar with maximum deviation of its atoms from the best plane of four carbon atoms being 0.043(2) Å. It displays two short C–O bonds, *i.e.*, C3–O3 = 1.2155(15) and C4–O4 = 1.2233(15) Å, one intermediate [C2–O2 = 1.2741(14) Å] and one long C–O bond

| Table | 1 |
|-------|---|

| CIVSIAI UALA IUI (FVII) IISU). |  | HSa | (PvH) | for | data | Crvstal |
|--------------------------------|--|-----|-------|-----|------|---------|
|--------------------------------|--|-----|-------|-----|------|---------|

| Empirical formula                      | C <sub>9</sub> H <sub>7</sub> NO <sub>4</sub> |
|----------------------------------------|-----------------------------------------------|
| Formula mass                           | 193.16                                        |
| Crystal system                         | monoclinic                                    |
| Space group                            | P 21/c                                        |
| <i>a</i> , Å                           | 10.1061(9)                                    |
| <i>b</i> , Å                           | 11.0436(10)                                   |
| <i>c</i> , Å                           | 7.4497(7)                                     |
| α, deg                                 | 90                                            |
| $\beta$ , deg                          | 103.188(2)                                    |
| γ, deg                                 | 90                                            |
| <i>V</i> , Å <sup>3</sup>              | 809.52(13)                                    |
| Ζ                                      | 4                                             |
| d <sub>calc</sub> , g cm <sup>-3</sup> | 1.585                                         |
| $\mu$ , mm <sup>-1</sup>               | 0.127                                         |
| λ, Å                                   | 0.71073                                       |
| Temperature, K                         | 92(2)                                         |
| Collected reflections                  | 10371                                         |
| Unique reflections, R <sub>int</sub>   | 2761, 0.0384                                  |
| Observed reflections                   | 2057                                          |
| $R1^{a} [I > 2\sigma(I)]$              | 0.0512                                        |
| wR2 <sup>b</sup> [all data]            | 0.1267                                        |
|                                        |                                               |

<sup>a</sup>  $R1 = \sum ||F_0| - |F_c|| / \sum |F_0|.$ 

Table 3

<sup>b</sup>  $wR2 = \{\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}.$ 



**Fig. 1.** ORTEP drawings of the constituent ions in pyridinium hydrogen squarate with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are drawn at arbitrary size.

| Bonding pattern (Å, °) in (PyH)(HSq). |            |          |            |  |  |  |
|---------------------------------------|------------|----------|------------|--|--|--|
| C1-01                                 | 1.3119(15) | C1-C2    | 1.4139(17) |  |  |  |
| 01-H10                                | 0.94(2)    | C1-C4    | 1.4505(17) |  |  |  |
| C2-02                                 | 1.2741(14) | C2-C3    | 1.4905(18) |  |  |  |
| C3-03                                 | 1.2155(15) | C3–C4    | 1.5193(18) |  |  |  |
| C4-04                                 | 1.2233(15) |          |            |  |  |  |
| C1-C4-C3                              | 87.89(9)   | 02-C2-C1 | 134.46(12) |  |  |  |
| C4-C3-C2                              | 87.96(9)   | 02-C2-C3 | 135.14(11) |  |  |  |
| C3-C2-C1                              | 90.40(10)  | 03-C3-C2 | 136.39(12) |  |  |  |
| C2-C1-C4                              | 93.71(10)  | 03-C3-C4 | 135.64(12) |  |  |  |
| 01-C1-C4                              | 136.01(11) | 04-C4-C3 | 135.45(11) |  |  |  |
| 01-C1-C2                              | 130.28(11) | 04-C4-C1 | 136.66(12) |  |  |  |

[C1-O1 = 1.3119(15) Å]. Both short bonds have values which are close to a C=O double bond. The C1-O1 bond length confirms the presence of proton on O1 atom, whereas the C2-O2 bond length confirms the presence of negative charge on O2 atom. The C-C bond length at the carbon atoms carrying the OH and the O<sup>-</sup> groups is shorter than the remaining three C-C bond lengths, *i.e.*, C1-C2 = 1.4139(17) Å vs. C1-C4 = 1.4505(17), C2-C3 = 1.4905(17) and C3-C4 = 1.5193(18) Å. Such a distribution of C-C bond lengths speaks of a localized C=C double bond between C1 and C2 atoms. The C-C-C angles within the HSq<sup>-</sup> ion deviate significantly from

Download English Version:

# https://daneshyari.com/en/article/1401735

Download Persian Version:

https://daneshyari.com/article/1401735

Daneshyari.com