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a b s t r a c t

Quantitative structure property relationship (QSPR) models were developed to predict the adsorption of
aromatic compounds by carbon nanotubes (CNTs). Five descriptors chosen by combining self-organizing
map and stepwise multiple linear regression (MLR) techniques were used to connect the structure of the
studied chemicals with their adsorption descriptor (K∞) using linear and nonlinear modeling techniques.
Correlation coefficient (R2) of 0.99 and root-mean square error (RMSE) of 0.29 for multilayered per-
ceptron neural network (MLP-NN) model are signs of the superiority of the developed nonlinear model
over MLR model with R2 of 0.93 and RMSE of 0.36. The results of cross-validation test showed the
reliability of MLP-NN to predict the K∞ values for the aromatic contaminants. Molar volume and
hydrogen bond accepting ability were found to be the factors much influencing the adsorption of the
compounds. The developed QSPR, as a neural network based model, could be used to predict the
adsorption of organic compounds by CNTs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Carbon nanotubes (CNTs) are hollow nanosized tubes made of
graphite sheets that are rolled into a cylindrical shape and closed by
two caps [1e3]. Owing to particular electronic and structural
characteristics, the CNTs are potential to be applied as catalysis [4],
field-effect transistors [5], hydrogen storage media [6] and elec-
trochemical sensor [7]. They can also enter the body and cause
adverse effects due to their own poisonous nature as well as toxic
effect of the substances adsorbed by them [8,9]. However, the
unique extremely large surface area and highly hydrophobic sur-
faces cause CNTs to have strong adsorption affinities to a wide
range of organic compounds [10e12]. They can be considered as
promising means to adsorb organic contaminants from the aquatic
environments [13,14].

To find the effect of the structure of an organic compound on its
adsorption by CNTs and also to provide some insights into the
mechanism of adsorbing organics by CNTs, developing

chemoinformatics methods such as quantitative structure property
relationship (QSPR) seems to be useful and instructive. The
assumption is that the variation in the adsorption of an adsorbate
can be correlated with changes in the molecular structures of
desired organics. In QSPR studies many statistical techniques such
as multiple linear regression (MLR), partial least squares regression
(PLS), support vector machine and various types of artificial neural
networks (ANNs) can be used to derive correlationmodels between
descriptors of molecular structures and properties [15e18]. With
the help of QSPR method as a time and money saving technique, it
is possible to predict which organic contaminant can be adsorbed
by CNTs in aqueous solution without resorting to experimentation.
There are a limited number of reports on the development of
predictivemodels for adsorption of contaminants. Recently, a linear
salvation energy relationship (LSER) model has been developed to
predict the adsorption of 28 various small molecules on CNTs [19].
The authors found that lipophilicity is the predominant descriptor
and hydrogen bond basicity is the second most important factor in
the LSER model. In a more recently published study, Apul et al.
developed QSPR models using 33 molecular connectivity indices
and also LSER models to describe the relationship between the
structures of aromatic contaminants and their adsorption on CNTs
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[20]. They found that the molecular volume of the LSER model is
the most significant factor governing the adsorption process.

Although some theoretical models have been constructed for
predicting the adsorption of aromatic compounds by CNTs, neural
network based QSPRmodels for this purpose are still at elementary
steps. In the present study, we have decided to develop new QSPR
models using MLR and multilayer perceptron neural network
(MLP-NN) to improve the models obtained by Apul et al. [20]. With
the help of MLP-NN, a nonlinear relationship was discovered be-
tween adsorption data and chemical structures of desired com-
pounds. Results obtained by MLP-NN were compared with those
given by MLR and the role and contribution of the selected de-
scriptors were finally investigated on adsorption of the desired
compounds on CNTs.

2. Materials and methods

2.1. Data set

The data for adsorption of 59 aromatic compounds by multi
walled CNTs (MWCNTs) were taken from the recent study by Apul
et al. [20]. To obtain experimental values of single point adsorption
descriptor (K∞) the isotherm data had been used. The descriptor is
defined as K∞ ¼ qe/Ce, where qe and Ce are solid and liquid phase
equilibrium concentrations at infinite dilution conditions. We
employed K∞ as dependent variable to develop linear and nonlinear
QSPRmodels. The values of K∞ range from 13.0� 10�2 to 10.2� 103

for benzylalcohol and pyrene, respectively. The values were trans-
formed into logarithmic scale and the relationship between log K∞
and molecular descriptors was examined. The components in the
data set were severing randomly into the training, test and valida-
tion sets consisting of 43, 5 and 11 members, respectively. The
training set participated in the generation of the model and
adjusting its parameters and independent set of samples in valida-
tion set was used to assess the performance of the model. In case of
MLR modeling both test and validation sets were considered as
prediction set. Diversity analysis was performed on the data set in
order to confirm that the whole data set is represented by the
structures of the subsets [21,22]. In this way, the mean distances of
one sample to the remaining ones were computed from descriptor
space matrix. The details of diversity analysis are described in
Supplementary content. The experimental values of K∞ for all mol-
ecules studied in this work are listed in Table 1.

2.2. Molecular descriptors calculation, screening and selection

The simple mathematical representation of a molecule could be
carried out via molecular descriptors which are used to encode the
significant structural features of different molecules. The de-
scriptors are calculated by the Hyperchem program (ver. 7) [23].
The program constructs all molecular structures. The Austin Model
1 (AM1) as the semiempirical method was used to optimize the
molecular geometry. Thereafter, Dragon1 was utilized to calculate a
wide range of molecular descriptors. Four Abraham descriptors
were added to the descriptor pool in order to study the possible
nonlinear relationship between log K∞ and these descriptors. These
Abraham descriptors had been used previously as independent
parameters to develop linear solvent energy relationships [20]. The
following Abraham descriptors were included the ability of
hydrogen bond donating (A), the ability of hydrogen bond accept-
ing (B), polarizability/polarity term (P)and also molar volume (V).
The molecular descriptors were obtained by the Absolv module of

ADME Suite 5.0 software. The computed descriptors were analyzed
to investigate the presence of a constant or near constant values
and the descriptors with low variation were kept obsolete from
further investigation. The remained descriptors were arranged in a
59 � 189 matrix, while 59 and 189 are respectively the number of
the compounds and molecular descriptors. Then, the SOM network
was accomplished with the transpose of data matrix in order to
reduce the descriptor space and the results lead to the reduction of
the descriptors number to 42. Numerous stepwise MLR models
were developed to choose themost significant descriptors between
the remained molecular descriptors. These established models
were investigated based on themultiple correlation coefficients (R),
standard error (SE), F-statistic, the number of included descriptors
and the prediction ability. Based on the results, five descriptors
finally were selected and utilized for the generation of nonlinear
and linear models.

2.3. Multiple linear regressions

MLR equation, i.e.,y ¼ b0 þ b1x1 þ b2x2 þ…þ bnxn is used to
create linear model relating a dependent variable y (here log K∞) to
independent variables xi, i.e.,molecular descriptors. The coefficient
vector b is computed by the descriptor matrix X, including a further
column with ones in order to compute coefficientb0, according
tob ¼ ðXTXÞ�1XTy. It should be noted that the MLR model is
appropriately fitted, while the sum of squares correspond to the
differences of predicted and experimental values are minimized.

2.4. Multilayered perceptron neural network

ANNs could be used in non-linear mapping complex patterns.
Usually, a neural network contains several layers including an input
layer, one or several hidden layers, and finally an output layer. The
inputs in MLP-NN are completely joined to the hidden layer while
the hidden layer neurons are completely joined to the outputs
[24,25]. During learning step, the sequenced input patterns offered
to the network are propagated to the onward direction as layer by
layer until the final output layer is computed. The error term is
defined as the difference between the resulted output and the
target value. The computed errors are used as the input pattern for
feedback joints in order to adjust the synaptic weights in backward
direction layer by layer. The performance of MLP-NN model is
influenced by the kind of transfer function and the neuronnumber
in the hidden layer. In order to obtain an optimal MLP-NN model,
different networks with 4e8 neurons in the hidden layer and with
three logistic, exponential and identity functions in each hidden
and output layer were trained using Quasi-Newton algorithm. The
trained optimal network was utilized as an analytical tool for the
prediction of log K∞ value correspond to the compounds.

2.5. Applicability domain

The ability domain of MLP-NNmodel was appraised by Leverage
approach to investigate the applicability of the developed QSPR
model for estimation of the adsorption of new molecules without
any experimental data [26,27]. The warning leverage was
computed byh� ¼ 3ðpÞ=n; where, p is representative for the num-
ber of model variable plus one. The n represents the number of
training materials. The leverage value is obtained as:

hi ¼ xTi
�
XTX

��1
xi i ¼ 1;…;n (1)

In this equation,hi is the material leverage (i) in the descriptor
space, xi is the descriptor raw-vector for the query material, whileX1 http://www.disat.unimib.it/chem.
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