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a b s t r a c t

This work presents a mathematical approach for the best way to structure hyperelastic
models applicable to incompressible rubber-like materials; and it describes a model vali-
dation procedure using a step-by-step method for parameters estimation. This technique
allows the validation of a restrained model as well as a complete one by doing it by grad-
uation as the deformation increases. It builds on the restrained form (constrained model)
essentially by progressively adding a higher degree term. The contribution of the added
terms is irrelevant to the regime in which this constrained model provides a good fit to
data. It becomes significant only where the deviation between the data and the restrain
model prediction is important. It is a nonlinear process that leads to an optimal solution.
After a concise appraisal of the underlying theoretical framework, the model-building
strategies and parameters estimation method are presented. An attempt to understand
and to elucidate how the existing attractive phenomenological models have been built is
discussed. Furthermore, analytical and numerical results from hyperelastic modeling are
compared using each of the two procedures first by deriving an optimal strain energy func-
tion which is then used in the formulation of a new constitutive model that generalizes the
Hart-Smith model and second, by evaluating the correct and stable parameters values of
rubbery materials taking into account the physical constraints that must be imposed on
a realistic and physical model.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Physics investigations most often force researchers to
adopt analytical models to examine or simulate phenom-
ena. In hyperelastic modeling of rubber-like materials, a
variety and a multitude of phenomenological constitutive
models have been proposed either in strain-invariant-
based form as that of Rivlin [55]; or stretch-based form
as those of Valanis and Landel [66], Peng and Landel [53]
and Ogden [50], Ogden [51]. The usual approach for build-
ing a phenomenological hyperelastic model is generally
based on two principal points of view: the first one is based
on assumptions, specific to the investigator, which con-

sider a certain number of (first) terms of the (strain energy)
Rivlin expansion; and the second takes the experimental
established facts by Rivlin and Saunders [57] and by Trel-
oar [62] as the basis for their modeling. Usually in the first
case, a specific and explicit polynomial expression is as-
sumed; examples include the earlier models of Mooney
[46], Isihara et al. [31], Biderman (1958), Obata et al.
[49], Tschoegl [64], James et al. [32,33] and more recent
models [71,69,40,28,2]. In the second case, several theoret-
ical or empirical models have been developed taking into
account experimental established facts as constraints that
must be imposed on a model [23,27,1,38,8,5]). The first ap-
proach generally leads to a fixed-order problem, then a lin-
ear problem. Subsequently to validating an assumed
model, one ought to determine the parameters from fits
of sets of experimental data in order to adjust the model
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predictions by minimizing errors. Frequently, the classical
least squares procedure is applied. This procedure is based
on fitting the coefficients of all of the terms of a model in a
single least squares process. In most cases, several data
sets of different deformation modes are simultaneously
used for a better accuracy but without any physical con-
straints, i.e., without restrictions on sign of parameters
[21,25,52,2,58,34,59]. In the opposite case, the number of
terms used in building a model and its order are purely
and directly established from fit of data. The analytical
form (number of terms) of a model erected from the Rivlin
series or from the Ogden expression (1984) is adapted to
the complexity of the data (high-order or low-order mate-
rials). This second way leads to a free-order nonlinear prob-
lem, which remains now a difficult procedure. This is why
investigators commonly assume a precise form involving a
fixed number of terms of the strain energy as seen previ-
ously. Recently, an approach in stages [10,6], i.e., a contin-
uous progression by stepped blocks, accessible enough to a
non specialist in numerical computation, allows a simulta-
neous estimation of an optimal form of a model (free-order
problem) and the corresponding parameters values by a
multi-stage-identification process. Some investigators
have chosen to do parameters identification by a step-by-
step procedure [38] without constraints on parameters
sign [28,7,43]. Others have imposed strict restrictions on
parameters sign [26,11,15,8,5,9,14].

In the present works the two ways of building and
assessing (density) energy function forms and the two
techniques for estimating parameters will be investigated:
direct and step-by-step procedures. At the end a new con-
stitutive model would be suggested.

2. Procedures for parameters estimation: basic concepts

2.1. Classical procedure

The procedure most commonly used in numerical com-
putation is the least squares method based on a single pro-
cess of evaluating simultaneously all the parameters of a
model. The use of least squares requires the user to provide
an explicit form of the model (i.e. the number of known-or-
der basic generating functions), which can be the order of
polynomial approximation for linear least squares or the
choice of a precise model (a fixed number of unknown-or-
der monomial terms) for non-linear least squares. Note
that in linear least squares method, the coefficients of all
of the terms of a model are fitted in a single-step operation
without any constraint on parameters sign [17,60,39,4].
For problems where the basic functions are unknown (as
example: unknown coefficients and unknown exponents
of monomials), it becomes a nonlinear problem. All usual
nonlinear methods (e.g., Newton, Newton–Raphson,
Gauss–Newton, Marquardt, Levenberg–Marquardt, etc.)
being all iterative procedures, optimal use of nonlinear
least squares requires good judgment and experience to
establish good initial guesses to avoid local minima for sta-
tionary solution [39,36,37,42]. The convergence of these
procedures depends on many factors: regularity of the
Jacobian matrix, choice of the line search, etc. In general,

no sign constraints exist on parameters values in nonlinear
least squares method, except for methods as the so-called
NNLS (non-negative least squares procedure) by Lawson
and Hanson [39]. See also the works of Hartmann [26]
and D’haes et al. [16].

2.2. Approach-in-stages procedure

This method is a different identification procedure done
stage-by-stage enabling the weighting effects of each gen-
erating function to be felt in the relative partial identifica-
tion domain [10]. This is contrary to the usual procedure
that permits the evaluation of all of the terms of a model
in a single process. The new approach makes it possible
to estimate the real order of a function. It may be recalled
that in the usual method, the investigator has to estimate
this order by himself, based on his experience, knowledge
etc. The approach-in-stages procedure graphically evalu-
ates generating functions and parameters values step-by-
step in a continuous multi-stage process.

2.2.1. Estimating the optimal order and the accurate base of
approximation

A significant property of the approach-in-stages is its
ability to evaluate an optimal approximation order, and
to predetermine the correct number of basic functions gen-
erating the sough-after function [10]. As a result, the opti-
mal model is precisely obtained [7,8].

For a better precision on parameters’ values, the least
squares method can be apply by taking as base of approx-
imation the generating-functions obtained by the ap-
proach-in-stages procedure.

2.2.2. Inverse method
In linear plotting, the segment [01] represents a unity

graduation in grid reference for the domain [010]. For
functions study, one generally considers two principal sub-
sets: [01], which is very small (in linear analysis consider-
ation) and [11[, which is extremely large.

– To invert the importance (the weight) of these two sub-
sets, one has to take the inverse of the considered vari-
able, so the segment [01] is converted into [11[ and
vice versa.

– To give the same influence to the two subsets, one con-
siders the logarithmic function, thus, the segment [01]
becomes [�10[ and the interval [11[ turns into [01[.

This permits the extension of the study domain of the
interval [01] to [�10[ and [11[ to [01[ for better inves-
tigation and more precision. Thus, to begin by determining
the lower order monomial when x tends towards zero, one
displays the curve in bilogarithmic plot (Log x, Log f(x));
the slope of the linear part corresponds to the exponent
of the monomial and the intercept to its coefficient. Note
that for the monomials xbj with bj a negative real number,
i.e., bj < 0, the equivalent function is obtained when x tends
towards zero.
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