Journal of Molecular Structure 1074 (2014) 330-338

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

Synthesis, crystal structure and optical property of two zinc metal organic frameworks constructed from isonicotinic acid

Yi-Fan Xiao, Ting-Ting Wang, He-ping Zeng*

School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials, South China University of Technology, Guangzhou 510641, Guangdong, PR China

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- Two novel metal organic frameworks have been synthesized by Zn(NO₃)₂ and isonicotinic acid.
- Compound 1 and reported compound 1' are framework isomers.
- Two isomers have different optical properties and specific area due to the structure.
- There was a crystal phase transformation for 2 when it actived at 100 °C.

ARTICLE INFO

Article history: Received 23 February 2014 Received in revised form 3 June 2014 Accepted 4 June 2014 Available online 16 June 2014

Keywords: Metal Organic Frameworks Zn complex Isonicotinic acid Crystal structure Isomer

Introduction

Frameworks isomerism is the term used to describe the occurrence of MOFs which possess the same formula while the structure is different [1]. Even though researchers use the same metal and ligand, combine different synthetic conditions such as reaction time, pH and temperature in multiple ways to produce different structures [2–4]. Isonicotinic acid (HIN) is widely used in synthesizing metal organic frameworks as asymmetrical rigid ligand. Research area includes transition metal [5–12], lanthanide metal [13–16] and Multi metal [17–23] compounds. And many researchers used HIN as an auxiliary ligand.

As for Zn MOFs with isonicotinic acid, Wu et al. [24] synthesized a microporous 3-D chiral $Zn(IN)_2 \cdot 2H_2O(1')$. Shen Liang [25] synthesized a zinc complex $[Zn(IN)_2(H_2O)_4](IN = C_6H_4NO_2^-)$. In which the zinc atom coordinates to two nitrogens of two IN ligands and four H_2O . Hong [26] Prepared a three-dimensional supramolecular compound $[Zn(INO)_2(DMF)]$ DMF(INO = isonicotinic acid N-oxide). James et al. [27] studied discrete aquo complexes $[Zn(INA)_2(OH_2)_4]$

ABSTRACT

Two new zinc Metal Organic Frameworks(MOFs), $Zn(IN)_2$ (1) and $Zn(IN)_2(NO_3)(H_2O)$ (2)(HIN = isonicotinic acid), have been synthesized and characterized by PXRD,IR, BET surface area test, uv-vis spectra, thermogravimetric analysis, fluorescent Spectra and single crystal X-ray diffraction. 1 is a 3D 3-fold interpenetrating framework. While 2 reveals a 1D chain structure. Different structures resulted in different optical *properties*. And there was a crystal phase transformation for 2 when it actived at 100 °C.

© 2014 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail address: hpzeng@scut.edu.cn (H.-p. Zeng).

interconverted to their corresponding extended network structures [M(INA)₂]. Zhang et al. [28] used MOFs, Zn(ISN)₂·2H₂O as chiral stationary phase for high-resolution gas chromatography.

In this paper, we reported the synthesis and characterization of two MOFs $Zn(IN)_2(1)$ and $Zn(IN)_2(HNO_3)(H_2O)(2)$. Compound 1 is a framework isomer of the reported compound $Zn(IN)_2 \cdot 2H_2O$ (1') [24] with 3-fold interpenetrating networks. They have the same coordination environment, but different interpenetrating networks, as result there are many different *properties* between them, like color, space group and especially optical properties. 2 is a 1D chain MOFs with a similar structure as reported [26]. And there was process of crystal phase transformation for 2.

Experimental

Materials and measurements

All of the solvents and reagents for synthesis were commercially available. FT-IR spectra were recorded from KBr pellets in the range 4000–400 cm⁻¹ on a Bruker EQUINOX-55 spectrometer. Fluorescence spectra were performed on Hitachi F-4500 fluorescence spectrophotometer at room temperature. Thermogravimetric analyses (TGA) were performed under nitrogen with a heating rate of 50 °C/min using a Q600 SDT thermogravimetric analyzer. Variable-temperature powder X-ray diffraction (PXRD) was carried out on a Shimadzu XRD-7000 analyzer. BET surface area test was carried out on 3H-2000PS1/2 Specific surface & pore size analysis instrument. The mesopore size distribution and total mesopore volumes were determined using the modified BJH method from the adsorption isotherm data

Synthesis

Preparation of $Zn(IN)_2(1)$

A mixture of $Zn(NO_3)_2$ ·6H₂O (0.1 mmol, 0.03 g), HIN (0.1 mmol,0.022 g), in EtOH (4 mL) was heated in a 23 mL Teflonlined autoclave at 120 °C for 1 day. After being cooled to room temperature, yellow crystals of 1 were collected by filtration, washed with water, and dried in air (54% yield based on H₂IN). Anal.Calc. for C₁₂H₈N₂O₄Zn (%): C, 46.76; H, 2.60; N, 9.00. Found: C, 46.57; H, 2.41; N, 8.78. IR (KBr, cm⁻¹): 3424, 1962, 1634, 1557, 1234, 1213, 1101, 1058, 1034, 774, 701.

Preparation of $Zn(IN)_2 \cdot (HNO_3)(H_2O)(2)$

A similar reaction of a mixture of $Zn(NO_3)_2$ - $6H_2O$ (0.1 mmol, 0.03 g), HIN (0.1 mmol,0.022 g), in EtOH (4 mL) was heated in a 23 mL Teflon-lined autoclave at 90 °C for 1 day. Colorless blocks of crystals of 2 were isolated in yield 37%. Anal.Calc. for $C_{12}H_{11}N_3$ O_8Zn (%): C, 37.02; H, 2.83; N, 10.80. Found: C, 36.90; H, 3.06; N, 10.47. IR (KBr, cm⁻¹): 3413, 2311, 1649, 1551, 1385, 1231, 1025, 775, 694,620.

Preparation of $Zn(IN)_2(1')$

 $Zn(IN)_2 \cdot 2H_2O$ (1') was synthesized according to the method reported previously [24]. A dimethylsulfoxide (DMSO) solution (50 mL) of isonicotinic anhydride (1 mmol, 0.228 g) was placed at the bottom of a straight glass tube, over which a solution of $Zn(OAC)_2 \cdot 2H_2O$ (2 mmol, 0.439 g) in methanol (50 mL) was carefully layered. The tube was sealed under vacuum and put into a refrigerator. Over 2 weeks, large colorless needle-like single crystals were obtained (63% yield based on H₂IN). Anal.Calc. for $C_{12}H_8N_2O_4Zn$ (%): C, 41.7; H, 3.5; N, 8.6. Found: C, 41.5; H, 3.6; N, 8.8.

X-ray crystallography

Crystals of 1 and 2 were selected for lattice parameter determination and collection of intensity data at 296 K on a Bruker Smart APEX II CCD diffractometer with monochromated Mo K α radiation ($\lambda = 0.71073$ Å) using a $\varphi - \omega$ scan mode. The structures were solved by direct methods and refined on F2 by full matrix leastsquares using SHELXTL. All non-hydrogen atoms were refined anisotropically. The contribution of these hydrogens was included in the structure factor calculations. Crystallographic data are summarized in Table 1. Selected bond lengths and angles for 1 and 2 are listed in Table 2.

Metal ion exchange

The crystals of 1 and 1' were first immersed in a solution of Ni $(NO_3)_2 \cdot 2.5H_2O$ in H_2O for 30 days. Then the solid samples were suspended in H_2O for two weeks in order to remove quest molecule. The exchanged samples were decomposed with concentrated HNO₃, and the ratio of Zn/Ni and Zn ions output (ppm) was determined by atomic absorption spectrophotometer.

Results and discussion

Crystal structure

$Zn(IN)_2(1)$

Single-crystal X-ray diffraction analysis reveals that compound 1 crystallizes in the orthorhombic space group $P 2_1 2_1 2_1$. Each Zn(II)

Table 1

Crystal data and refinement parameters of 1 and 2.

Empirical formula	$C_{12}H_{12}N_2 O_6Zn$	C ₁₂ H ₁₁ N ₃ O ₈ Zn
Formula weight	309.57	390.61
Crystal system	Orthorhombic	Orthorhombic
Space group	P 21 21 21	Pbca
a	8.1614(5)	14.0883(13)
Ь	11.9032(9)	13.8063(11)
С	12.8351(9)	14.5821(15)
V (A ³)	1246.89(15)	2836.3(5)
Ζ	4	8
DCalcd (g/cm ³)	1.649	1.829
F (000)	624	1584
Theta range	2.96-25.02	2.89-25.02
Goodness-of-fit on F2	1.008	1.093
R_1 , wR ₂ $[I \ge 2\sigma(I)]$	0.0465, 0.0661	0.0369, 0.0785
R_1 , w R_2 (all data)	0.0756, 0.0768	0.0693, 0.1003

Table 2										
Selected	bond	lengths	(Å)	and	angles	(deg)	for	1	and	2.

1			
Zn1-01	1.935(5)	Zn1-N1	2.020(6)
Zn1-03	1.920(4)	Zn1-N2	2.040(5)
01-Zn1-03	115.1(2)	01-Zn1-N1	106.14(18)
01-Zn1-N2	99.5(2)	03-Zn1-N2	104.02(17)
03-Zn1-N1	106.14(18)	N1-Zn1-N2	107.7(3)
2			
Zn1-01	2.013(3)	Zn1-N1	2.112(3)
Zn1-03	2.035(3)	Zn1-05	2.218(4)
Zn1-08	2.058(3)	Zn1-06	2.496(4)
01-Zn1-03	173.26(11)	01-Zn1-08	90.92(12)
03-Zn1-08	89.87(11)	01-Zn1-N1	94.54(12)
03-Zn1-N1	91.82(12)	08-Zn1-N1	102.50(13)
01-Zn1-05	90.88(11)	03–Zn1–05	86.68(11)
08-Zn1-05	165.33(12)	N1-Zn1-05	91.86(13)
01-Zn1-06	86.12(12)	03-Zn1-06	87.38(11)
08-Zn1-06	112.37(12)	N1-Zn1-06	145.11(13)
05-Zn1-06	53.26(11)		

Download English Version:

https://daneshyari.com/en/article/1402380

Download Persian Version:

https://daneshyari.com/article/1402380

Daneshyari.com