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h i g h l i g h t s

� Exact form of kinetic energy operator
for 1D and 2D vibrational
Hamiltonian was derived.
� Numerical solution of 2D Schrödinger

equation using Fourier series was
realized.
� 1D and 2D PES for PyO/TCA complex

in acetonitrile were obtained.
� The wave numbers were calculated

and compared with experiment.
� Comparison of results obtained using

various sets of vibrational coordinates
was made.
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a b s t r a c t

The analysis of O–H� � �O stretching vibrations of the pyridine N-oxide/trichloroacetic acid (PyO/TCA)
H-bond complex in acetonitrile solution was carried out. 1D and 2D potential energy surfaces associated
with the variation of valence coordinates of hydroxyl and hydrogen bonds were calculated for this pur-
pose in the B3LYP/cc-pVTZ approximation. The exact form of kinetic energy operator was obtained using
these coordinates and Wilson’s vectors. The numerical solution of 2D Schrödinger equation using Fourier
series was realized and the wave numbers of O–H and O� � �H vibrations were calculated and compared
with the results obtained using different sets of vibrational coordinates. The values of the O–H� � �O
stretching frequencies obtained as a result of the matrix diagonalization were discussed and compared
with the experimental data, the results of harmonic- and anharmonic computations as well as with
the results of 3D computations of potential energy surfaces of the PyO/TCA complex using simplified form
of kinetic energy operator.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The complexes of carboxylic acids with pyridine N-oxide (PyO)
are the promising benchmark systems for the studies of short- and

very short O–H� � �O hydrogen bonding [1–3]. These systems exhibit
asymmetric and flat single well potential energy surfaces (PES),
which result in large-amplitude proton motion with frequent pro-
ton transfer. The interest in H-bonding and proton dynamics is sig-
nificantly gained by its importance in modern material science,
understanding fine features of organic and enzymatic reactions,
transition state, vibrationally enhanced catalysis, etc. [4–7].
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The PyO/TCA (trichloroacetic acid) is a peculiar complex in this
series having an extremely short donor–acceptor separation of
2.430 Å [1]. Recently we have performed for the title complex
(PyO/TCA) the calculations of 1D and 2D PES and O–H vibrations
frequencies in vacuo [8], 3D calculations in vacuo [9], 3D and anhar-
monic calculations in polar media (acetonitrile) [10]. It was shown
that the accuracy prediction of the O–H stretching frequency in-
creases while going from 1D to 3D model. Carrying out these
1D–3D calculations [8–10] we have used a slightly simplified Ham-
iltonian and the set of Cartesian coordinates of the hydroxyl hydro-
gen atom necessary to describe its motion. It is quite obvious that
predictive ability of the calculations should increase enlarging the
dimensionality of the vibrational problem as well as improving the
precision of presentation of kinetic and potential energy operators
in the Hamiltonian. On the other hand, it seems that the results of
calculations should not depend on the choice of vibrational coordi-
nates. Therefore the purposes of the present work were: (i) to
derive the exact expression for kinetic energy operator in the Ham-
iltonian, which describes the vibrational motion of the hydroxyl
hydrogen atom using several natural (internal) coordinates; (ii)
to apply it solving 2D Schrödinger equation by using of Fourier ser-
ies; (iii) to calculate 1D and 2D potential energy surfaces and the
frequencies of O–H and O� � �H stretching vibrations in PyO/TCA
complex in acetonitrile solution and to compare them with the
available experimental data.

2. The exact form of kinetic energy operator in the Schrödinger
equation

Let us to restrict the dimension of the current problem to 1D
and 2D cases and to use the lengths of O–H and O� � �H bonds as
the vibrational coordinates (denoted q and Q, respectively). Consid-
ering a restricted dimensionality of the current problem it is clear
that there are three atoms in the bridge O–H� � �O that participate in
the vibrational motion, while in the previously used models [8–10]
the positions of all atoms in the H-bond complex were fixed, ex-
cept the bridge hydrogen. The Schrödinger equation in the Born–
Oppenheimer approximation can be written as
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where A, B, C are understood as O, H, O, respectively, xi, yi and zi are
the Cartesian coordinates of i-th atom, MA, MB, MC are the masses of
corresponding atoms. We are interested in two internal coordinates,
namely: q ¼ lAB � l0

AB and Q ¼ LBC � L0
BC , where lAB and LBC are the

lengths of the corresponding bonds and l0
AB; L0

BC are the values of
these lengths in the equilibrium configuration.

The transitions from the Cartesian to internal coordinates in the
Schrödinger equation are usually based on the Podolsky transform
[11]. This was realized in some recent works [12–15] as well as in
the program package [16]. In the present work trying to get the ex-
act expression of the kinetic energy operator in the q(Q) space we
use the chain rule approach [17–19]. It is expected the operator in
such a form to be more convenient for the computing and can be
applied without any additional simplifying assumptions. The deri-
vation consists of the following steps.

Since xA affects only q we obtain:
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The similar expressions can be constructed for yA and zA, respec-
tively. However, xB affects on both – q and Q. Therefore:
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The analogous formulas can be obtained for yB and zB. Hence,
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In the next steps of this treatment we get:
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Using formalism of Wilson’s~s vectors [20] one can obtain:

gradrA
ðqÞ ¼ @q

@xA
þ @q
@yA
þ @q
@zA
¼~sq

rA
;

@q
@xA

� �2

þ @q
@yA

� �2

þ @q
@zA

� �2

¼ ð~sq
rA
Þ2; ð5Þ

@2q
@x2

B

þ @
2q
@y2

B

þ @
2q
@z2

B

¼ div~sq
rA
: ð6Þ

and substituting (5) and (6) to (4) we get
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