Journal of Molecular Structure 1054-1055 (2013) 1-5

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

Synthesis and structural characterization of two epimers driven from 20(S)-protopanaxadiol

CrossMark

Qing-Guo Meng^{a,*}, Wen-Juan Tan^a, Gui-Ge Hou^b, Xi-Yue Zhang^a, Xin-Yue Hu^a, Fan Yang^a, Guo-Jing Bai^a, Wei-Wei Zhu^a, Yi Cai^a, Yi Bi^a

^a School of Pharmacy, Yantai University, Yantai 264005, PR China ^b School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China

HIGHLIGHTS

• Two epimers, 20*S*, 24*R*-epoxy dammarane-3*β*, 12*β*, 25-triol (**3**) and 20*S*, 24*S*-epoxy dammarane-3*β*, 12*β*, 25-triol (**4**) are prepared.

• The configuration of C-24 of **3** and **4** are *R*-form and *S*-form, respectively.

• **3** Generate a H-bonded tube with left-handed chiral channel.

• 4 Extend into 2D H-bonded network with right-handed and left-handed chiral channels.

• This study provides a facile way to synthesize and separate new types of chiral medicinal derivatives.

ARTICLE INFO

Article history: Received 29 July 2013 Received in revised form 12 September 2013 Accepted 18 September 2013 Available online 25 September 2013

Keywords: 20(S)-Protopanaxadiol Epimers Crystal structures Molecular polarity

ABSTRACT

Two epimers, $20S_24R$ -epoxy dammarane- $3\beta_112\beta_22$ -triol (**3**) and $20S_24S$ -epoxy dammarane- $3\beta_112\beta_22$ -triol (**4**) were prepared from 20(S)-protopanaxadiol, which were confirmed by ESI-MS, NMR, and X-ray single-crystal diffraction. The results indicate the configuration of C-24 of **3** and **4** are *R*-form and *S*-form, respectively. **3** and **4** crystallize in a orthorhombic space group P2(1)2(1)2(1). Compound **3** have more complicated intramolecular hydrogen bonds than that of **4**, which results in the weaker molecular polarity in **3**. Crystal stacking displays that **3** generates a H-bonded tube with left-handed chiral channel, while **4** extends into two-dimensional network with right-handed and left-handed chiral channels in the solid state.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Both *Panax ginseng* and *Panax quinquefolium*, belonging to the Araliaceae, are well-known traditional medicinal herbs. They are used as tonics and the treatment for diseases. *Panax ginseng* contains numbers of saponins, called ginsenoside, including an oleanolic acid-type saponin in addition to the major protopanaxadiol and protopanaxatriol-type saponins [1]. However, *Panax quinquefolium* contains an occillol-type (20S,24*R*-epoxyside) saponin with high activity [2], as well as oleanolic acid-type saponin, protopanaxadiol and protopanaxatriol-type saponins. Yu et al. have found that occillol, 20S,24*R*-epoxy-dammarane-3 β ,6 α ,12 β ,25-tetraol which is degraded and isolated from *Panax quinquefolium* in poor yield, possesses cardioprotective effect on myocardial injury induced by isoproterenol in rats [3]. In our previous study, it was

* Corresponding author. Tel.: +86 5356706022. E-mail address: qinggmeng@163.com (Q.-G. Meng). shown that ocotillol-type derivatives derived from 20(S)-protopanaxadiol and 20(S)-protopanaxatriol with *R*-form configuration of C-24 can result in a reduction in creatine kinase activity, superoxide dismutase and glutathione peroxidase activities and inhibit the elevation of malondialdehyde content [4,5]. Based on this, herein, we report the synthesis and X-ray single-crystal diffraction of the two epimers derived from 20(S)-protopanaxadiol. The synthetic route is illustrated in Fig. 1.

2. Results and discussion

20(*S*)-Protopanaxadiol was degraded from 20(*S*)-panaxadiol saponins with sodium methoxide in DMSO, purified over silica gel and crystallized from ethyl acetate. Epimeric 20*S*,24-epoxy-dammarane-3 β ,12 β ,25-triol acetate (2) was synthesized by reaction of 20(*S*)-protopanaxatriol and acetic anhydride in pyridine at room temperature and oxidation of the resulting 1 using *m*-CPBA. 20*S*,24*R*-epoxy dammarane-3 β ,12 β ,25-triol (3) [6] and

^{0022-2860/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.molstruc.2013.09.021

Fig. 1. Synthetic route of 3 and 4. Reagents: (a) (CH₃CO)₂O, DMAP. Pyridine; (b) m-CPBA, CH₂Cl₂; (c) NaOH, DMSO, H₂O.

20*S*,24*S*-epoxy dammarane-3 β ,12 β ,25-triol (4) are prepared by reaction of 2 and sodium hydroxide in DMSO and water in 1:1 M ratio (Fig. 1). The structures of the epimers were confirmed by ESI-MS, ¹H NMR, ¹³C NMR and X-ray single-crystal diffraction. According to the literature, the difference of 20(*S*)- and 20(*R*)-isomer in ocotillol-type saponin may be observed from the carbon signal of C-21 (*S*-form: δ 28 ± 1; *R*-form: δ 20 ± 1) in ¹³C NMR spec-

Table 1 ¹³C NMR data of **1–4** (CDCl₃, δ, ppm).

No.	1	No.	2	No.	3	No.	4
1	38.5	1	38.5	1	50.2	1	38.9
2	23.5 ^a	2	23.6	2	32.1	2	28.5
3	80.5	3	80.6	3	78.8	3	78.8
4	37.8	4	37.9	4	48.9	4	38.8
5	55.9	5	55.9	5	76.6	5	55.9
6	18.1	6	18.1	6	24.9	6	18.2
7	34.5	7	34.4	7	39.7	7	34.8
8	39.7	8	39.6	8	52.1	8	39.7
9	49.9	9	49.6	9	69.9	9	50.0
10	37.0	10	37.0	10	48.7	10	37.1
11	28.3	11	28.4	11	34.7	11	31.1
12	79.5	12	75.5	12	77.2	12	70.9
13	44.9	13	46.4	13	60.3	13	49.3
14	52.6 ^d	14	52.4	14	70.6	14	51.9
15	31.4	15	30.9	15	38.8	15	32.5
16	27.1	16	27.6	16	28.0	16	27.4
17	52.9 ^d	17	50.2	17	55.9	17	47.9
18	15.6	18	15.5 ^a	18	18.2	18	15.3
19	16.2 ^e	19	17.4 ^a	19	20.9	19	16.2
20	73.6	20	85.5	20	87.4	20	86.4
21	26.2	21	26.9	21	28.4	21	27.5
22	36.1	22	39.8	22	37.1	22	31.2
23	22.2 ^a	23	24.0	23	27.4	23	24.9
24	125.2	24	84.5	24	87.4	24	85.4
25	131.2	25	70.5	25	76.9	25	70.0
26	25.7	26	25.7	26	31.5	26	27.9
27	17.6 ^e	27	22.8	27	26.1	27	26.0
28	27.9	27	27.9	28	28.8	28	27.8
29	16.4 ^e	29	16.0 ^a	29	17.7	29	15.2
30	16.4 ^e	30	16.5 ^a	30	24.2	30	18.0
3-1′	170.7 ^c	3-1′	170.8 ^a				
3-2'	21.5 ^b	3-2'	21.8 ^b				
12-1′	169.5 ^c	12-1′	170.5 ^a				
12-2'	21.2 ^b	12-2'	21.2 ^b				

Table 2	
Selected crystal data for com	pound 3 and 4 .

Parameter	3	4
Empirical formula	$C_{30}H_{52}O_4$	C ₃₀ H ₅₂ O ₄
Formula weight	476.72	476.72
CCDC	841280	911853
Crystal size (mm ³)	$0.20 \times 0.20 \times 0.16$	$0.30 \times 0.25 \times 0.25$
Crystal system	Orthorhombic	Orthorhombic
Space group	P2 (1) 2 (1) 2 (1)	P2 (1) 2 (1) 2 (1)
a (nm)	0.76793 (14)	0.73882 (14)
<i>b</i> (nm)	1.3067 (3)	1.3919 (3)
<i>c</i> (nm)	2.8084 (5)	2.7256 (5)
α (°)	90	90
β (°)	90	90
γ (°)	90	90
V/nm ³	2.8181 (9)	2.8029 (9)
$D_x (g cm^{-1})$	1.124	1.130
F (000)	1056	1056
Absorportion coefficiention (mm ⁻¹)	0.072	0.072
Θ for data collection (°)	1.72-25.50	1.64-25.50
Final R indices	0.0416	0.0509
wR ₂	0.1107	0.1009
S	1.055	1.074

 $R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}| \cdot wR_{2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2}.$

Fig. 2. The ORTEP figure of 3 with thermal ellipsoids shown at 30% probability.

Download English Version:

https://daneshyari.com/en/article/1405840

Download Persian Version:

https://daneshyari.com/article/1405840

Daneshyari.com